Florida Department of Education

COURSE DESCRIPTION GRADES PreK-5

Course	5012020
Number:	
Course Title:	Mathematics - Grade Kindergarten
Number of Credits:	NA
Course	Year
Length:	Core
Course Type:	
Course Level:	1
Course Status:	State Board Approved

RELATED BENCHMARKS (11) :

Scheme	Descriptor	Cognitive Complexity

MA.K.A.1.1
Represent quantities with numbers up to 20, verbally, in writing, and with manipulatives.

Solve problems including those involving sets by
MA.K.A.1.2 counting, by using cardinal and ordinal numbers, by Moderate comparing, by ordering, and by creating sets up to 20 .

MA.K.A.1.3
Solve word problems involving simple joining and separating situations.

MA.K.A.4.1
Identify and duplicate simple number and non-numeric repeating and growing patterns.

MA.K.G.2.1
Describe, sort and re-sort objects using a variety of attributes such as shape, size, and position.

Identify, name, describe and sort basic two-dimensional
MA.K.G.2.2 shapes such as squares, triangles, circles, rectangles, High

Moderate hexagons, and trapezoids.

MA.K.G.2.3	Identify, name, describe, and sort three-dimensional shapes such as spheres, cubes and cylinders.	Moderate
MA.K.G.2.4	Interpret the physical world with geometric shapes, and describe it with corresponding vocabulary.	Moderate
MA.K.G.2.5	Use basic shapes, spatial reasoning, and manipulatives to model objects in the environment and to construct more complex shapes.	High
MA.K.G.3.1	Compare and order objects indirectly or directly using measurable attributes such as length, height, and weight.	Moderate
MA.K.G.5.1	Demonstrate an understanding of the concept of time using identifiers such as morning, afternoon, day, week, month, year, before/after, shorter/longer.	Moderate

Florida Department of Education
 COURSE DESCRIPTION GRADES PreK-5

Course	
Number:	5012030
Course Title:	Mathematics - Grade One
Number of Credits:	NA
Course	Year
Length:	
Course Type:	Core
Course Level:	1
Course Status:	State Board Approved

RELATED BENCHMARKS (14) :

Scheme	Descriptor	Cognitive Complexity
MA.1.A.1.1	Model addition and subtraction situations using the concepts of "part-whole," "adding to," "taking away from," "comparing," and missing addend."	Moderate
MA.1.A.1.2	Identify, describe, and apply addition and subtraction as inverse operations.	Moderate
MA.1.A.1.3	Create and use increasingly sophisticated strategies, and use properties such as Commutative, Associative and Additive Identity, to add whole numbers.	Moderate
MA.1.A.1.4	Use counting strategies, number patterns, and models as a means for solving basic addition and subtraction fact problems.	High
MA.1.A.2.1	Compare and order whole numbers at least to 100.	Moderate
MA.1.A.2.2	Represent two digit numbers in terms of tens and ones.	Low

MA.1.A.2.3 Order counting numbers, compare their relative Moderate
magnitudes, and represent numbers on a number line.

MA.1.A.4.1
Extend repeating and growing patterns, fill in missing terms, and justify reasoning.

High

Use mathematical reasoning and beginning understanding
MA.1.A.6.1 of tens and ones, including the use of invented strategies, High to solve two-digit addition and subtraction problems.

MA.1.A.6.2
Solve routine and non-routine problems by acting them out, using manipulatives, and drawing diagrams.

Use appropriate vocabulary to compare shapes according
MA.1.G.3.1 to attributes and properties such as number and lengths of Moderate sides and number of vertices.

Compose and decompose plane and solid figures,
MA.1.G.3.2
including making predictions about them, to build an understanding of part-whole relationships and properties of shapes.

MA.1.G.5.1 Measure by using iterations of a unit, and count the unit measures by grouping units.

Compare and order objects according to descriptors of
MA.1.G.5.2 length, weight, and capacity.

Moderate

Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES PreK-5

Course	
Number:	5012040
Course Title:	Mathematics - Grade Two
Number of Credits:	NA
Course Length:	Year
Course Type:	Core
Course Level: Course	1
Status:	State Board Approved

RELATED BENCHMARKS (21) :

Scheme Descriptor	Cognitive
Complexity	

Identify relationships between the digits and their place
MA.2.A.1.1 values through the thousands, including counting by tens and hundreds.

MA.2.A.1.2 Identify and name numbers through thousands in terms of place value, and apply this knowledge to expanded notation.

Cognitive Complexity

Moderate pacevale, and this

MA.2.A.1.3
Compare and order multi-digit numbers through the thousands.

Moderate

MA.2.A.2.1 Recall basic addition and related subtraction facts.
Low

Add and subtract multi-digit whole numbers through three digits with fluency by using a variety of strategies, including invented and standard algorithms and explanations of those procedures.

MA.2.A.2.3
Estimate solutions to multi-digit addition and subtraction problems through three digits.

MA.2.A.2.4 Solve addition and subtraction problems that involve measurement and geometry.

High

Extend number patterns to build a foundation for
MA.2.A.4.1 understanding multiples and factors - for example, skip Moderate counting by 2 's, 5 's, 10 's.

MA.2.A.4.2 Classify numbers as odd or even and explain why. Moderate

MA.2.A.4.3 Generalize numeric and non-numeric patterns using words and tables.

High

Describe and apply equality to solve problems, such as in balancing situations.

High
MA.2.A.4.4

MA.2.A.4.5 Recognize and state rules for functions that use addition and subtraction.

High

MA.2.A.6.1 Solve problems that involve repeated addition.
Moderate

MA.2.G.3.1
Estimate and use standard units, including inches and centimeters, to partition and measure lengths of objects.

Describe the inverse relationship between the size of a unit and number of units needed to measure a given object.

MA.2.G.3.3 Apply the Transitive Property when comparing lengths of objects.

Moderate

Moderate
MA.2.G.3.2

MA.2.G.3.3
Moderate

Estimate, select an appropriate tool, measure, and/or compute lengths to solve problems.

MA.2.G.5.1
Use geometric models to demonstrate the relationships
between wholes and their parts as a foundation to fractions.

MA.2.G.5.2 Identify time to the nearest hour and half hour.
Low

MA.2.G.5.3 Identify, combine, and compare values of money in cents up Moderate
to $\$ 1$ and in dollars up to $\$ 100$, working with a single unit of currency.

Measure weight/mass and capacity/volume of objects. Include the use of the appropriate unit of measure and their
MA.2.G.5.4 abbreviations including cups, pints, quarts, gallons, ounces Low (oz), pounds (lbs), grams (g), kilograms (kg), milliliters (mL) and liters (L).

Florida Department of Education

COURSE DESCRIPTION GRADES PreK-5

Course	
Number:	5012050
Course Title:	Mathematics - Grade Three
Number of Credits:	NA
Course Length:	Year
Course	
Type: Course	Core
Level: Course Status:	1

RELATED BENCHMARKS (17) :

Scheme Descriptor

Cognitive

Model multiplication and division including problems
MA.3.A.1.1 presented in context: repeated addition, multiplicative comparison, array, how many combinations, measurement, and partitioning.

MA.3.A.1.2
Solve multiplication and division fact problems by using strategies that result from applying number properties.

MA.3.A.1.3 Identify, describe, and apply division and multiplication as inverse operations.

High

Moderate

Represent fractions, including fractions greater than one,
MA.3.A.2.1 using area, set, and linear models.

Moderate

Moderate number of equal sized pieces in the whole.

MA.3.A.2.3
Compare and order fractions, including fractions greater than one, using models and strategies.

Complexity

Moderate

MA.3.A.2.2 $\begin{aligned} & \text { Describe how the size of the fractional part is related to the } \\ & \text { number of equal sized pieces in the whole. }\end{aligned}$

Use models to represent equivalent fractions, including
MA.3.A.2.4 fractions greater than 1, and identify representations of equivalence.

MA.3.A.4.1 Create, analyze, and represent patterns and relationships using words, variables, tables, and graphs.

MA.3.A.6.1
Represent, compute, estimate, and solve problems using numbers through hundred thousands.

Moderate

High

High

MA.3.A.6.2 Solve non-routine problems by making a table, chart ,or list and searching for patterns.

High

Describe, analyze, compare, and classify two-dimensional shapes using sides and angles - including acute, obtuse, and right angles - and connect these ideas to the definition of shapes.

Compose, decompose, and transform polygons to make
MA.3.G.3.2 other polygons, including concave and convex polygons with three, four, five, six, eight, or ten sides.

Build, draw, and analyze two-dimensional shapes from
MA.3.G.3.3 several orientations in order to examine and apply congruence and symmetry.

MA.3.G.5.1 Select appropriate units, strategies, and tools to solve problems involving perimeter.
MA.3.G.3. 1

High

Moderate
Moderate

High

Measure objects using fractional parts of linear units such as $1 / 2,1 / 4$, and $1 / 10$.

Low

Tell time to the nearest minute and to the nearest quarter hour, and determine the amount of time elapsed.

Construct and analyze frequency tables, bar graphs,
MA.3.S.7. 1 pictographs, and line plots from data, including data High collected through observations, surveys, and experiments.

Florida Department of Education

COURSE DESCRIPTION GRADES PreK-5

Course Number:	5012060
Course Title:	Mathematics - Grade Four
Number of Credits:	NA
Course Length:	Year
Course Type:	Core
Course Level:	1
Course Status:	State Board Approved

RELATED BENCHMARKS (21) :

Scheme Descriptor

Cognitive Complexity

Use and describe various models for multiplication in
MA.4.A.1.1 problem-solving situations, and demonstrate recall of basic Moderate multiplication and related division facts with ease.

Multiply multi-digit whole numbers through four digits
MA.4.A.1.2 fluently, demonstrating understanding of the standard algorithm, and checking for reasonableness of results, High including solving real-world problems.

MA.4.A.2.1
Use decimals through the thousandths place to name numbers between whole numbers.

Describe decimals as an extension of the base-ten number system.

High
MA.4.A.2.2

Relate equivalent fractions and decimals with and without models, including locations on a number line.

Moderate
MA.4.A.2.3

MA.4.A.2.4 Compare and order decimals, and estimate fraction and decimal amounts in real-world problems.

Generate algebraic rules and use all four operations to
MA.4.A.4.1 describe patterns, including nonnumeric growing or High repeating patterns.

MA.4.A.4.2 $\begin{aligned} & \text { Describe mathematics relationships using expressions, High } \\ & \text { equations, and visual representations. }\end{aligned}$

MA.4.A.4.3 Recognize and write algebraic expressions for functions with two operations.

High

Use and represent numbers through millions in various
MA.4.A.6.1 contexts, including estimation of relative sizes of amounts Moderate or distances.

Use models to represent division as:
MA.4.A.6.2 - the inverse of multiplication

- as partitioning
- as successive subtraction

MA.4.A.6.3 Generate equivalent fractions and simplify fractions. Moderate

MA.4.A.6.4 Determine factors and multiples for specified whole numbers.

Moderate

MA.4.A.6.5 Relate halves, fourths, tenths, and hundredths to decimals and percents.

Moderate

Estimate and describe reasonableness of estimates;
MA.4.A.6.6 determine the appropriateness of an estimate versus an High exact answer.

Describe and determine area as the number of same-sized
MA.4.G.3.1 units that cover a region in the plane, recognizing that a Moderate unit square is the standard unit for measuring area.

MA.4.G.3. 2
Justify the formula for the area of the rectangle "area = base x height".

Select and use appropriate units, both customary and
MA.4.G.3.3 metric, strategies, and measuring tools to estimate and Moderate solve real-world area problems.

MA.4.G.5.1 Classify angles of two-dimensional shapes using benchmark angles $\left(45^{\circ}, 90^{\circ}, 180^{\circ}\right.$, and 360°)

Low

Identify and describe the results of translations, reflections,
MA.4.G.5.2 and rotations of $45,90,180,270$, and 360 degrees Moderate including figures with line and rotational symmetry.

MA.4.G.5.3 $\begin{aligned} & \text { Identify and build a three-dimensional object from a two- } \\ & \text { dimensional representation of that object and vice versa. }\end{aligned}$ Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES PreK-5

Course			
Number:	5012070		
Course Title:	Mathematics - Grade Five		
Number of Credits:	NA		
Course	Year		
Length:			
Course		\quad Core \quad	Type:
:---			
Course Level: Course Status:			

RELATED BENCHMARKS (23) :

Scheme Descriptor

Cognitive

 ComplexityDescribe the process of finding quotients involving multi-
MA.5.A.1.1 digit dividends using models, place value, properties, and Moderate the relationship of division to multiplication.

MA.5.A.1. 2
Estimate quotients or calculate them mentally depending on the context and numbers involved.

Moderate Interpret solutions to division situations including those with remainders depending on the context of the problem.

High

Divide multi-digit whole numbers fluently, including
MA.5.A.1.4 solving real-world problems, demonstrating understanding of the standard algorithm and checking the reasonableness of results.

Represent addition and subtraction of decimals and
MA.5.A.2.1 fractions with like and unlike denominators using models, Moderate place value, or properties.

Add and subtract fractions and decimals fluently, and
MA.5.A.2.2 verify the reasonableness of results, including in problem Moderate situations.

MA.5.A.2.3 Make reasonable estimates of fraction and decimal sums and differences, and use techniques for rounding.

Moderate

MA.5.A.2.4 Determine the prime factorization of numbers. Moderate

MA.5.A.4.1 Use the properties of equality to solve numerical and real world situations.

Moderate

Construct and describe a graph showing continuous data, such as a graph of a quantity that changes over time.

High
MA.5.A.4.2

MA.5.A.6.1 Identify and relate prime and composite numbers, factors, Moderate and multiples within the context of fractions.

MA.5.A.6.2
Use the order of operations to simplify expressions which include exponents and parentheses.

Moderate

Moderate numbers.
Moderate

MA.5.A.6.3
Describe real-world situations using positive and negative

Moderate Compare, order, and grap
shown on a number line.

Solve non-routine problems using various strategies
MA.5.A.6.5 including "solving a simpler problem" and "guess, check, and revise".

Analyze and compare the properties of two-dimensional
$\begin{array}{ll}\text { MA.5.G.3.1 } & \begin{array}{l}\text { figures and three-dimensional solids (polyhedra), } \\ \text { including the number of edges, faces, vertices, and types }\end{array}\end{array}$ of faces.

Describe, define, and determine surface area and volume
$\begin{array}{ll}\text { MA.5.G.3.2 } & \begin{array}{l}\text { of prisms by using appropriate units and selecting } \\ \text { strategies and tools. }\end{array}\end{array}$

MA.5.G.5.1 $\begin{aligned} & \text { Identify and plot ordered pairs on the first quadrant of the } \\ & \text { coordinate plane. }\end{aligned}$

Compare, contrast, and convert units of measure within
MA.5.G.5.2 the same dimension (length, mass, or time) to solve Moderate problems.

Solve problems requiring attention to approximation,
MA.5.G.5.3 selection of appropriate measuring tools, and precision of High measurement.

MA.5.G.5.4 Derive and apply formulas for areas of parallelograms, triangles, and trapezoids from the area of a rectangle.

High

MA.5.S.7.1 Construct and analyze line graphs and double bar graphs. High

Differentiate between continuous and discrete data, and
MA.5.S.7. 2 determine ways to represent those using graphs and Moderate diagrams.

Florida Department of Education

COURSE DESCRIPTION GRADES 6-8

Course Number:	1200220
Course Title:	M/J Mathematics Transfer
Course Length:	Year
Course Level:	2
Course Status:	State Board Approved

Florida Department of Education

COURSE DESCRIPTION GRADES 6-8

Course Number:	1204000
Course Title:	M/J Intensive Mathematics (MC)
Course Length:	Year
Course Status:	State Board Approved

Florida Department of Education

COURSE DESCRIPTION GRADES 6-8

Course Number:	1205010	
Course Title:	M/J Mathematics 1	
Number of Credits:	NA	
Course Length:	Year	
Course Type:	Core	
Course Level:	2	
Course Status:	State Board Approved	
RELATED BENCHMARKS (21) :		
Scheme	Descriptor	Cognitive Complexity
LA.6.1.6.5	The student will relate new vocabulary to familiar words;	
LA.6.4.2.2	The student will record information (e.g., observations, notes, lists, charts, legends) related to a topic, including visual aids to organize and record information and include a list of sources used;	
MA.6.A.1.1	Explain and justify procedures for multiplying and dividing fractions and decimals.	Moderate
MA.6.A.1.2	Multiply and divide fractions and decimals efficiently.	Low
MA.6.A.1.3	Solve real-world problems involving multiplication and division of fractions and decimals.	High
MA.6.A.2.1	Use reasoning about multiplication and division to solve ratio and rate problems.	High
MA.6.A.2.2	Interpret and compare ratios and rates.	Moderate

MA.6.A.3.1

Write and evaluate mathematical expressions that
correspond to given situations.

Moderate
MA.6.A.3.2 $\begin{aligned} & \text { Write, solve, and graph one- and two- step linear equations Moderate } \\ & \text { and inequalities. }\end{aligned}$
MA.6.A.3.3
Work backward with two-step function rules to undo expressions.
Moderate
Moderate
MA.6.A.3.4 Solve problems given a formula.
$\begin{array}{ll}\text { MA.6.A.3.5 } & \text { Apply the Commutative, Associative, and Distributive } \\ \text { Properties to show that two expressions are equivalent. }\end{array}$
Moderate Properties to show that two expressions are equivalent.
Construct and analyze tables, graphs, and equations to
MA.6.A.3.6 describe linear functions and other simple relations using both common language and algebraic notation.
MA.6.A.5.1 Use equivalent forms of fractions, decimals, and percents
Moderate to solve problems.
High
Compare and order fractions, decimals, and percents,
MA.6.A.5.2 including finding their approximate location on a number Moderate line.
Estimate the results of computations with fractions,
MA.6.A.5.3 decimals, and percents, and judge the reasonableness of the Moderate results.
Understand the concept of Pi, know common estimates
MA.6.G.4.1 of $\operatorname{Pi}(3.14 ; 22 / 7)$ and use these values to estimate and Moderate calculate the circumference and the area of circles.
Find the perimeters and areas of composite two-
MA.6.G.4.2 dimensional figures, including non-rectangular figures Moderate (such as semicircles) using various strategies.
Determine a missing dimension of a plane figure or prism
MA.6.G.4.3 given its area or volume and some of the dimensions, or Moderate determine the area or volume given the dimensions.

Determine the measures of central tendency (mean,
MA.6.S.6.1 median, mode) and variability (range) for a given set of Low data.

Select and analyze the measures of central tendency or
MA.6.S.6.2 variability to represent, describe, analyze, and/or summarize a data set for the purposes of answering High questions appropriately.

Florida Department of Education

COURSE DESCRIPTION GRADES 6-8

Course Number:	1205020
Course Title:	M/J Mathematics 1 Advance
Number of Credits:	NA
Course Length:	Year
Course Type:	Core
Course Level:	3
Course Status:	State Board Approved

RELATED BENCHMARKS (31) :

Scheme Descriptor

Cognitive Complexity

LA.6.1.6.5 The student will relate new vocabulary to familiar words;

The student will record information (e.g., observations,
LA.6.4.2.2 notes, lists, charts, legends) related to a topic, including visual aids to organize and record information and include a list of sources used;

MA.6.A.1.1 Explain and justify procedures for multiplying and dividing Moderate fractions and decimals.

MA.6.A.1.2 Multiply and divide fractions and decimals efficiently.
Low

MA.6.A.1.3 $\begin{aligned} & \text { Solve real-world problems involving multiplication and } \\ & \text { division of fractions and decimals. }\end{aligned}$

MA.6.A.2.1 Use reasoning about multiplication and division to solve ratio and rate problems.

MA.6.A.2.2 Interpret and compare ratios and rates.
Moderate
Write and evaluate mathematical expressions that correspond to given situations.
Moderate
MA.6.A.3.2 Write, solve, and graph one- and two- step linear equations and inequalities.Work backward with two-step function rules to undoMA.6.A.3.3expressions.
MA.6.A.3.4 Solve problems given a formula. Moderate
MA.6.A.3.5 Apply the Commutative, Associative, and Distributive Properties to show that two expressions are equivalent.Construct and analyze tables, graphs, and equations to
MA.6.A.3.6 describe linear functions and other simple relations usingboth common language and algebraic notation.
MA.6.A.5.1 Use equivalent forms of fractions, decimals, and percents to solve problems.
Compare and order fractions, decimals, and percents,
MA.6.A.5.2 including finding their approximate location on a number Moderate line.
Estimate the results of computations with fractions,
MA.6.A.5.3 decimals, and percents, and judge the reasonableness of the results.
Understand the concept of Pi, know common estimates
MA.6.G.4.1 of $\operatorname{Pi}(3.14 ; 22 / 7)$ and use these values to estimate and Moderate calculate the circumference and the area of circles.
Find the perimeters and areas of composite two-
MA.6.G.4.2 dimensional figures, including non-rectangular figures Moderate (such as semicircles) using various strategies.
Determine a missing dimension of a plane figure or prism
MA.6.G.4.3 given its area or volume and some of the dimensions, or Moderate determine the area or volume given the dimensions.

MA.6.S.6.1 $\begin{aligned} & \text { Determine the measures of central tendency (mean, median, } \\ & \text { mode) and variability (range) for a given set of data. }\end{aligned}$

Select and analyze the measures of central tendency or
MA.6.S.6.2 $\begin{aligned} & \text { variability to represent, describe, analyze, and/or summarize } \\ & \text { a data set for the purposes of answering questions }\end{aligned}$ appropriately.

Solve percent problems, including problems involving
MA.7.A.1.2 discounts, simple interest, taxes, tips, and percents of
High increase or decrease.

Use and justify the rules for adding, subtracting,
MA.7.A.3.1 multiplying, dividing, and finding the absolute value of Moderate integers.

Add, subtract, multiply, and divide integers, fractions, and
MA.7.A.3.2 terminating decimals, and perform exponential operations with rational bases and whole number exponents including Moderate solving problems in everyday contexts.

Formulate and use different strategies to solve one-step and
MA.7.A.3.3 two-step linear equations, including equations with rational Moderate coefficients.

Use the properties of equality to represent an equation in a
MA.7.A.3.4 different way and to show that two equations are equivalent Moderate in a given context.
$\begin{array}{ll}\text { MA.7.A.5.1 } & \begin{array}{l}\text { Express rational numbers as terminating or repeating } \\ \text { decimals. }\end{array} \quad \text { Low }\end{array}$

MA.7.A.5.2 Solve non-routine problems by working backwards. High
MA.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones.

MA.7.G.2.2
Use formulas to find surface areas and volume of threedimensional composite shapes.

Moderate

Moderate

MA.7.G.4.3 $\begin{aligned} & \text { Identify and plot ordered pairs in all four quadrants of the } \\ & \text { coordinate plane. }\end{aligned}$

Florida Department of Education

COURSE DESCRIPTION GRADES 6-8

Course	
Number:	1205040
Course Title:	M/J Mathematics 2
Number of Credits: Course	NA
Length:	Year
Course Type: Course	Core
Level: Course Status:	2

RELATED BENCHMARKS (24) :

Scheme Descriptor
LA.7.1.6.5 The student will relate new vocabulary to familiar words;

The student will draft writing by organizing information
LA.7.3.2.2 into a logical sequence and combining or deleting sentences to enhance clarity; and

MA.7.A.1.1
Distinguish between situations that are proportional or not proportional, and use proportions to solve problems.

Cognitive Complexity

Solve percent problems, including problems involving
MA.7.A.1.2 discounts, simple interest, taxes, tips, and percents of High increase or decrease.

MA.7.A.1.3 Solve problems involving similar figures.
High

MA.7.A.1.4 Graph proportional relationships and identify the unit rate as the slope of the related linear function.

MA.7.A.1.5 $\begin{aligned} & \text { Distinguish direct variation from other relationships, Moderate } \\ & \text { including inverse variation. }\end{aligned}$

MA.7.A.1.6 Apply proportionality to measurement in multiple contexts, including scale drawings and constant speed.

Moderate

Use and justify the rules for adding, subtracting,
MA.7.A.3.1 multiplying, dividing, and finding the absolute value of Moderate integers.

Add, subtract, multiply, and divide integers, fractions, and
MA.7.A.3.2
terminating decimals, and perform exponential operations with rational bases and whole number exponents including

Moderate solving problems in everyday contexts.

Formulate and use different strategies to solve one-step and
MA.7.A.3.3 two-step linear equations, including equations with rational Moderate coefficients.

Use the properties of equality to represent an equation in a
MA.7.A.3.4 different way and to show that two equations are equivalent Moderate in a given context.

MA.7.A.5.1 $\begin{aligned} & \text { Express rational numbers as terminating or repeating } \\ & \text { decimals. }\end{aligned}$

MA.7.A.5.2 Solve non-routine problems by working backwards. High
MA.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones.

Moderate pran pres.

MA.7.G.2.2
Use formulas to find surface areas and volume of threedimensional composite shapes.

Moderate

Determine how changes in dimensions affect the perimeter,
MA.7.G.4.1 area, and volume of common geometric figures, and apply High these relationships to solve problems.

MA.7.G.4.2
Predict the results of transformations, and draw transformed figures with and without the coordinate plane.
MA.7.G.4.3 Identify and plot ordered pairs in all four quadrants of the coordinate plane.
coordinate plane.
Compare, contrast, and convert units of measure between
MA.7.G.4.4 different measurement systems (US customary or metric High (SI)), dimensions, and derived units to solve problems.
Determine the outcome of an experiment and predict which
MA.7.P.7. 1 events are likely or unlikely, and if the experiment is fair or Moderate unfair.
Determine, compare, and make predictions based on
MA.7.P.7.2 experimental or theoretical probability of independent or High dependent events,
Evaluate the reasonableness of a sample to determine the
MA.7.S.6.1 appropriateness of generalizations made about the High population.
MA.7.S.6.2
Construct and analyze histograms, stem-and-leaf plots, and circle graphs.

Florida Department of Education

COURSE DESCRIPTION GRADES 6-8

Course Number: Course Title:	1205050
Number of Credits:	NA
Course	Year
Length: Course	Core
Type: Course Level: Course Status:	3

RELATED BENCHMARKS (31) :

Scheme Descriptor

Cognitive Complexity

LA.7.1.6.5 The student will relate new vocabulary to familiar words;

The student will draft writing by organizing information into
LA.7.3.2.2 a logical sequence and combining or deleting sentences to enhance clarity; and

MA.7.A.1.1
Distinguish between situations that are proportional or not proportional, and use proportions to solve problems.

High

Solve percent problems, including problems involving
MA.7.A.1.2 discounts, simple interest, taxes, tips, and percents of increase or decrease.

MA.7.A.1.3 Solve problems involving similar figures.
High

MA.7.A.1.4 $\begin{aligned} & \text { Graph proportional relationships and identify the unit rate as } \\ & \text { the slope of the related linear function. }\end{aligned}$
Moderate

MA.7.A.1.5 $\begin{aligned} & \text { Distinguish direct variation from other relationships, } \\ & \text { including inverse variation }\end{aligned}$ including inverse variation.

Moderate

Apply proportionality to measurement in multiple contexts,
MA.7.A.1.6 $\begin{aligned} & \text { Apply proportionality to measurement in mul } \\ & \text { including scale drawings and constant speed. }\end{aligned}$
Moderate

Express rational numbers as terminating or repeating decimals.

Low
MA.7.A.5.1

MA.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones.

Determine how changes in dimensions affect the perimeter,
MA.7.G.4.1 area, and volume of common geometric figures, and apply High these relationships to solve problems.

MA.7.G.4.2
Predict the results of transformations, and draw transformed figures with and without the coordinate plane.

Moderate

MA.7.G.4.2

MA.7.G.4.3 Identify and plot ordered pairs in all four quadrants of the coordinate plane.

Determine the outcome of an experiment and predict which
MA.7.P.7. events are likely or unlikely, and if the experiment is fair or Moderate unfair.

Determine, compare, and make predictions based on
MA.7.P.7.2 $\begin{aligned} & \text { experimental or theoretical probability of independent or High } \\ & \text { dependent events, }\end{aligned}$
Evaluate the reasonableness of a sample to determine the
$\begin{array}{ll}\text { MA.7.S.6.1 } & \begin{array}{l}\text { appropriateness of generalizations made about the } \\ \text { population. }\end{array}\end{array}$
MA.7.S.6.2 Construct and analyze histograms, stem-and-leaf plots, and circle graphs.

Moderate

Create and interpret tables, graphs, and models to represent,
MA.8.A.1.1 analyze, and solve problems related to linear equations, including analysis of domain, range, and the difference between discrete and continuous data.
$\begin{array}{ll}\text { MA.8.A.1.2 } & \begin{array}{l}\text { Interpret the slope and the } x \text { - and } y \text {-intercepts when graphing } \\ \text { a linear equation for a real-world problem. }\end{array}\end{array}$

MA.8.A.1.6 Compare the graphs of linear and non-linear functions for real-world situations.

Moderate

MA.8.A.4.2 $\begin{aligned} & \text { Solve and graph one- and two-step inequalities in one } \\ & \text { variable. }\end{aligned}$
Moderate

MA.8.A.6.1 Use exponents and scientific notation to write large and small numbers and vice versa and to solve problems.

Make reasonable approximations of square roots and mathematical expressions that include square roots, and use
MA.8.A.6.2 them to estimate solutions to problems and to compare Moderate mathematical expressions involving real numbers and radical expressions.

MA.8.A.6.3
Simplify real number expressions using the laws of exponents.

Perform operations on real numbers (including integer
MA.8.A.6.4 exponents, radicals, percents, scientific notation, absolute value, rational numbers, and irrational numbers) using multistep and real world problems.

MA.8.G.2.2 Classify and determine the measure of angles, including angles created when parallel lines are cut by transversals.

Demonstrate that the sum of the angles in a triangle is 180-
MA.8.G.2.3 degrees and apply this fact to find unknown measure of Moderate angles and the sum of angles in polygons.

Validate and apply Pythagorean Theorem to find distances
MA.8.G.2.4 in real world situations or between points in the coordinate Moderate plane.

Compare, contrast, and convert units of measure between
MA.8.G.5.1 $\begin{aligned} & \text { different measurement systems (US customary or metric } \\ & \text { (SI)) and dimensions including temperature, area, volume, }\end{aligned}$ High and derived units to solve problems.

Select, organize and construct appropriate data displays,
MA.8.S.3.1 including box and whisker plots, scatter plots, and lines of best fit to convey information and make conjectures about possible relationships.

MA.8.S.3.2 Determine and describe how changes in data values impact measures of central tendency.

Moderate

Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES 6-8

Course Number:	1205070
Course Title:	M/J Mathematics 3
Number of Credits:	NA
Course Length: Course	Year
Type: Course	Core
Level: Course	2
Status:	State Board Approved

RELATED BENCHMARKS (22) :

Scheme Descriptor

Cognitive
Complexity

LA.8.1.6.5 The student will relate new vocabulary to familiar words;

The student will organize information to show understanding or relationships among facts, ideas, and events (e.g.,
LA.8.2.2.3 representing key points within text through charting, mapping, paraphrasing, summarizing, or comparing/contrasting);

The student will prewrite by making a plan for writing that
LA.8.3.1.2 addresses purpose, audience, main idea, logical sequence, and time frame for completion; and

Create and interpret tables, graphs, and models to represent, MA.8.A.1.1 analyze, and solve problems related to linear equations, including analysis of domain, range, and the difference

High between discrete and continuous data.

MA.8.A.1.2 $\begin{aligned} & \text { Interpret the slope and the } \mathrm{x} \text {-and y-intercepts when graphing } \\ & \text { a linear equation for a real-world problem. }\end{aligned}$ Moderate

Use tables, graphs, and models to represent, analyze, and
MA.8.A.1.3 solve real-world problems related to systems of linear High equations.

MA.8.A.1.4 $\begin{aligned} & \text { Identify the solution to a system of linear equations using }\end{aligned}$ graphs.

Moderate

MA.8.A.1.5 $\begin{array}{ll}\text { Translate among verbal, tabular, graphical, and algebraic } \\
\text { representations of linear functions. }\end{array} \quad$ Moderate
MA.8.A.1.5 $\begin{array}{ll}\text { Translate among verbal, tabular, graphical, and algebraic } \\
\text { representations of linear functions. }\end{array} \quad$ Moderate
MA.8.A.1.6 $\begin{aligned} & \text { Compare the graphs of linear and non-linear functions for } \\ & \text { real-world situations. }\end{aligned}$ Moderate

MA.8.A.4.1 Solve literal equations for a specified variable. Low
MA.8.A.4.2 $\begin{aligned} & \text { Solve and graph one- and two-step inequalities in one } \\ & \text { variable. }\end{aligned} \quad$ Moderate

MA.8.A.6.1 Use exponents and scientific notation to write large and small numbers and vice versa and to solve problems.

Make reasonable approximations of square roots and mathematical expressions that include square roots, and use
MA.8.A.6.2 them to estimate solutions to problems and to compare Moderate mathematical expressions involving real numbers and radical expressions.

MA.8.A.6.3 Simplify real number expressions using the laws of exponents.

Perform operations on real numbers (including integer
MA.8.A.6.4 $\begin{aligned} & \text { exponents, radicals, percents, scientific notation, absolute } \\ & \text { value, rational numbers, and irrational numbers) using mu }\end{aligned}$ step and real world problems.

MA.8.G.2.1
Use similar triangles to solve problems that include height and distances.

High

MA.8.G.2.2 $\begin{aligned} & \text { Classify and determine the measure of angles, including } \\ & \text { angles created when parallel lines are cut by transversals. Low }\end{aligned}$

Demonstrate that the sum of the angles in a triangle is 180-
MA.8.G.2.3 degrees and apply this fact to find unknown measure of Moderate angles and the sum of angles in polygons.

Validate and apply Pythagorean Theorem to find distances in
MA.8.G.2.4 real world situations or between points in the coordinate Moderate plane.

Compare, contrast, and convert units of measure between
MA.8.G.5.1 different measurement systems (US customary or metric (SI)) and dimensions including temperature, area, volume, and derived units to solve problems.

Select, organize and construct appropriate data displays, including box and whisker plots, scatter plots, and lines of best fit to convey information and make conjectures about possible relationships.

Determine and describe how changes in data values impact measures of central tendency.

Moderate
MA.8.S.3.2

Florida Department of Education

COURSE DESCRIPTION GRADES 6-8

Course	1205080
Number:	
Course Title: Number of Credits:	NA
Course	
Length:	Year
Course Type:	Core
Course Level:	3
Course Status:	State Board Approved

RELATED BENCHMARKS (29) :

Scheme	Descriptor	Cognitive
Complexity		

LA.8.1.6.5 The student will relate new vocabulary to familiar words;

The student will organize information to show understanding or relationships among facts, ideas, and
LA.8.2.2.3 events (e.g., representing key points within text through charting, mapping, paraphrasing, summarizing, or comparing/contrasting);

The student will prewrite by making a plan for writing that
LA.8.3.1.2 addresses purpose, audience, main idea, logical sequence, and time frame for completion; and

Create and interpret tables, graphs, and models to MA.8.A.1.1 represent, analyze, and solve problems related to linear equations, including analysis of domain, range, and the difference between discrete and continuous data.

MA.8.A.1.2 Interpret the slope and the x - and y-intercepts when graphing a linear equation for a real-world problem.

MA.8.A.1.3 Use tables, graphs, and models to represent, analyze, and

High

Moderate

High
solve real-world problems related to systems of linear equations.

MA.8.A.1.4	Identify the solution to a system of linear equations using graphs.	Moderate
MA.8.A.1.5	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	Moderate
MA.8.A.1.6	Compare the graphs of linear and non-linear functions for real-world situations.	Moderate
MA.8.A.4.1	Solve literal equations for a specified variable.	Low
MA.8.A.4.2	Solve and graph one- and two-step inequalities in one variable.	Moderate
MA.8.A.6.1	Use exponents and scientific notation to write large and small numbers and vice versa and to solve problems.	Low
MA.8.A.6.2	Make reasonable approximations of square roots and mathematical expressions that include square roots, and use them to estimate solutions to problems and to compare mathematical expressions involving real numbers and radical expressions.	Moderate

MA.8.A.6.3

MA.8.A.6.4

MA.8.G.2.1
Use similar triangles to solve problems that include height and distances.

High

Low

Demonstrate that the sum of the angles in a triangle is 180-
MA.8.G.2.3 degrees and apply this fact to find unknown measure of Moderate angles and the sum of angles in polygons.

Validate and apply Pythagorean Theorem to find distances
MA.8.G.2.4 in real world situations or between points in the coordinate Moderate plane.

Compare, contrast, and convert units of measure between
MA.8.G.5.1 different measurement systems (US customary or metric (SI)) and dimensions including temperature, area, volume, and derived units to solve problems.

Select, organize and construct appropriate data displays, including box and whisker plots, scatter plots, and lines of
MA.8.S.3.1 best fit to convey information and make conjectures about Moderate possible relationships.

MA.8.S.3.2
Determine and describe how changes in data values impact measures of central tendency.

High

Florida Department of Education

COURSE DESCRIPTION GRADES 6-8

Course Number:	1205090
Course Title:	M/J Mathematics 1 International Baccalaureate
Course Length:	Year
Course Type:	Core
Course Level:	3
Course Status:	State Board Approved
IB?	
International Baccalaureate	Yes

Florida Department of Education

COURSE DESCRIPTION GRADES 6-8

Course Number:	1205100
Course Title:	M/J Pre-Algebra International Baccalaureate
Course Length:	Year
Course Type:	Core
Course Level:	3
Course Status:	State Board Approved
IB?	
International Baccalaureate	Yes

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1200300
Number:	
Course Title:	Pre-Algebra
Course Length:	Year
Course Status:	State Board Approved

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are
limited to a maximum of two variables in Algebra I,

Algebra IH, Algebra Ib, Applied Math II, and Integrated
Math I.

The Benchmark MA.912.A.10.3 is limited to linear
expressions, equations, and inequalities in Algebra I,
Algebra IH, Algebra Ib, Applied Math II, and Integrated

Alsessment: \quad| Math I. |
| :--- |
| The Benchmark MA.912.A.4.4 is limited to dividing |
| polynomials by monomials and does not include |
| synthetic division in Algebra I, Algebra IH, Algebra Ib, |
| and Applied Math II. |
| The Benchmark MA.912.A.6.2 is limited to radical |
| expressions in the form of square roots in Algebra I, |
| Algebra IH, Algebra Ib, Applied Math II, and Integrated |
| Math I. |

RELATED BENCHMARKS (31) :

Scheme Descriptor

Cognitive Complexity

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet,
LA.1112.3.1.3 outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

LA.910.1.6.1
The student will use new vocabulary that is introduced and taught directly;

MA.6.S.6.1 Determine the measures of central tendency (mean, Low
median, mode) and variability (range) for a given set of data.

MA.7.A.1.1	Distinguish between situations that are proportional or not proportional, and use proportions to solve problems.	High
MA.8.A.1.1	Create and interpret tables, graphs, and models to represent, analyze, and solve problems related to linear equations, including analysis of domain, range, and the difference between discrete and continuous data.	High
MA.8.A.1.2	Interpret the slope and the x - and y -intercepts when graphing a linear equation for a real-world problem.	Moderate
MA.8.A.1.5	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	Moderate

MA.8.A.4.1 Solve literal equations for a specified variable. Low

MA.8.A.6.1 Use exponents and scientific notation to write large and
Low small numbers and vice versa and to solve problems.

Perform operations on real numbers (including integer
MA.8.A.6.4 exponents, radicals, percents, scientific notation, absolute value, rational numbers, and irrational numbers) using multi-step and real world problems.

MA.8.G.2.1 Use similar triangles to solve problems that include height and distances.

High

MA.8.G.2.2 $\begin{aligned} & \text { Classify and determine the measure of angles, including } \\ & \text { angles created when parallel lines are cut by transversals. }\end{aligned}$ Low

Demonstrate that the sum of the angles in a triangle is
MA.8.G.2.3 180-degrees and apply this fact to find unknown measure Moderate of angles and the sum of angles in polygons.

Validate and apply Pythagorean Theorem to find
MA.8.G.2.4 distances in real world situations or between points in the Moderate coordinate plane.

Compare, contrast, and convert units of measure between
MA.8.G.5.1 different measurement systems (US customary or metric (SI)) and dimensions including temperature, area, volume, and derived units to solve problems.

Select, organize and construct appropriate data displays,
MA.8.S.3.1

MA.912.A.1.1 including box and whisker plots, scatter plots, and lines of best fit to convey information and make conjectures Moderate about possible relationships.

Know equivalent forms of real numbers (including integer exponents and radicals, percents, scientific notation, absolute value, rational numbers, irrational numbers).

MA.912.A.1.2 Compare real number expressions. Moderate

MA.912.A.1.3 $\begin{aligned} & \text { Simplify real number expressions using the laws of } \\ & \text { exponents. }\end{aligned}$ exponents.

Perform operations on real numbers (including integer
MA.912.A.1.4 exponents, radicals, percents, scientific notation, absolute value, rational numbers, irrational numbers) using multistep and real-world problems.

MA.912.A.1.5
Use dimensional (unit) analysis to perform conversions between units of measure, including rates.

MA.912.A.2.1 Create a graph to represent a real-world situation. Moderate

MA.912.A.2.2 Interpret a graph representing a real-world situation. Moderate

MA.912.A.3.1 $\begin{aligned} & \text { Solve linear equations in one variable that include } \\ & \text { simplifying algebraic expressions. }\end{aligned}$ Moderate

Identify and apply the distributive, associative, and
MA.912.A.3.2 commutative properties of real numbers and the Moderate properties of equality.

MA.912.A.4.1 Simplify monomials and monomial expressions using the Low
laws of integral exponents.

MA.912.A.10.2 $\begin{aligned} & \text { Decide whether a solution is reasonable in the context of Moderate } \\ & \text { the original situation. }\end{aligned}$

MA.912.A.10.4 Use counterexamples to show that statements are false. High

Use counting principles, including the addition and the
MA.912.P.1.1 multiplication principles, to determine size of finite High sample spaces and probabilities of events in those spaces.

MA.912.P.2.2 Determine probabilities of independent events.
Moderate

Apply the definition of random sample and basic types of
MA.912.S.2.2 sampling, including representative samples, stratified Moderate samples, censuses.

Florida Department of Education
 COURSE DESCRIPTION GRADES 9-12

Course	1200310
Number:	
Course Title:	Algebra 1
Course	Year
Length:	

Course Status: State Board Approved

ASSESSMENT

Algebra 1 End of Course Assessment and Item Types by Benchmark (PDF)

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I,

Assessment:

 Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.The Benchmark MA. 912 .A. 4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.

The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (40) :

The student will use new vocabulary that is introduced and taught directly;

LA.910.1.6.2
The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

The student will prewrite by using organizational
LA. 910.3 .1 .3 strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

MA.912.A.1.8
Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Moderate

Describe the concept of a function, use function notation,
MA.912.A.2.3 determine whether a given relation is a function, and link Moderate equations to functions.

MA.912.A.2.4 Determine the domain and range of a relation.
Moderate

MA.912.A.2.13 Solve real-world problems involving relations and functions.

High

Solve linear equations in one variable that include simplifying algebraic expressions.

Moderate

Identify and apply the distributive, associative, and
MA.912.A.3.2 commutative properties of real numbers and the properties Moderate of equality.

MA.912.A.3.3 Solve literal equations for a specified variable.
Moderate

MA.912.A.3.4
Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

Symbolically represent and solve multi-step and real-
MA.912.A.3.5 world applications that involve linear equations and
Moderate inequalities.

MA.912.A.3.7 Rewrite equations of a line into slope-intercept form and standard form.

Low

Graph a line given any of the following information: a
MA.912.A.3.8 table of values, the x - and y-intercepts, two points, the Moderate slope and a point, the equation of the line in slope-
intercept form, standard form, or point-slope form .

MA.912.A.3.9
Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.

Write an equation of a line given any of the following information: two points on the line, its slope and one point
MA.912.A.3.10 on the line, or its graph. Also, find an equation of a new line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Write an equation of a line that models a data set, and use
MA.912.A.3.11 the equation or the graph to make predictions. Describe the slope of the line in terms of the data, recognizing that the slope is the rate of change.

Graph a linear equation or inequality in two variables with
MA.912.A.3.12 and without graphing technology. Write an equation or Moderate inequality represented by a given graph.

Use a graph to approximate the solution of a system of
MA.912.A.3.13 linear equations or inequalities in two variables with and Moderate without technology.

Solve systems of linear equations and inequalities in two
MA.912.A.3.14 and three variables using graphical, substitution, and Moderate elimination methods.

MA.912.A.3.15 Solve real-world problems involving systems of linear equations and inequalities in two and three variables.

Moderate

Moderate

High (

High

MA.912.A.4.1 Simplify monomials and monomial expressions using the laws of integral exponents.

MA.912.A.4.2 Add, subtract, and multiply polynomials. Low

MA.912.A.4.3 Factor polynomial expressions.
Moderate

MA.912.A.4. 4
Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

MA.912.A.5.1 Simplify algebraic ratios.
Moderate

MA.912.A.5.4 Solve algebraic proportions. Low

MA.912.A.6.1 Simplify radical expressions Moderate

MA.912.A.6.2 Add, subtract, multiply, and divide radical expressions (square roots and higher).

Moderate

MA.912.A.7.1 Graph quadratic equations with and without graphing technology.

Moderate

Moderate
factoring and by using the quadratic formula.

MA.912.A.7.8 Use quadratic equations to solve real-world problems. Moderate

MA.912.A.7.10 Use graphing technology to find approximate solutions of quadratic equations.

Use a variety of problem-solving strategies, such as
MA.912.A.10.1 drawing a diagram, making a chart, guessing- andchecking, solving a simpler problem, writing an equation, working backwards, and creating a table.

MA.912.A.10.2 Decide whether a solution is reasonable in the context of High High
MA.912.A.7.2 Solve quadratic equations over the real numbers by

Decide whether a given statement is always, sometimes, or
MA.912.A.10.3 never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

MA.912.D.7.1
Perform set operations such as union and intersection, complement, and cross product.

MA.912.D.7.2
Use Venn diagrams to explore relationships and patterns and to make arguments about relationships between sets. perpendicular lines, and equations of lines.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1200320
Number:	
Course Title: Course	Algebra 1 Honors
Length:	Year
Course Status:	State Board Approved
Honors?	Yes

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA. 912 .A. 4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (46) :

Scheme Descriptor

Cognitive Complexity

LA.910.1.6.1
The student will use new vocabulary that is introduced and taught directly;

The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline,
chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

MA.912.A.1.8
Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Describe the concept of a function, use function notation,
MA.912.A.2.3 determine whether a given relation is a function, and link Moderate equations to functions.

MA.912.A.2.4 Determine the domain and range of a relation. Moderate

MA.912.A.2.13 $\begin{aligned} & \text { Solve real-world problems involving relations and }\end{aligned}$ functions.

Moderate

High

Moderate
MA.912.A.3.1
Solve linear equations in one variable that include simplifying algebraic expressions.

Identify and apply the distributive, associative, and
MA.912.A.3.2 commutative properties of real numbers and the properties of equality.

MA.912.A.3.3 Solve literal equations for a specified variable. Moderate
MA.912.A.3.4 $\begin{aligned} & \text { Solve and graph simple and compound inequalities in one } \\ & \text { variable and be able to justify each step in a solution. }\end{aligned}$

Symbolically represent and solve multi-step and real-
MA.912.A.3.5 world applications that involve linear equations and Moderate inequalities.

MA.912.A.3.6
Solve and graph the solutions of absolute value equations and inequalities with one variable.

Moderate

Moderate

Rewrite equations of a line into slope-intercept form and
MA.912.A.3.7 standard form.

Moderate

Low

Graph a line given any of the following information: a table of values, the x - and y-intercepts, two points, the slope and a point, the equation of the line in slopeintercept form, standard form, or point-slope form .

MA.912.A.3.9 Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.

Write an equation of a line given any of the following information: two points on the line, its slope and one
MA.912.A.3.10 point on the line, or its graph. Also, find an equation of a Moderate new line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Write an equation of a line that models a data set, and use
MA.912.A.3.11 the equation or the graph to make predictions. Describe the slope of the line in terms of the data, recognizing that the slope is the rate of change.

Graph a linear equation or inequality in two variables
MA.912.A.3.12 with and without graphing technology. Write an equation Moderate or inequality represented by a given graph.

Use a graph to approximate the solution of a system of
MA.912.A.3.13 linear equations or inequalities in two variables with and without technology.

Solve systems of linear equations and inequalities in two
MA.912.A.3.14 and three variables using graphical, substitution, and elimination methods.

MA.912.A.3.15 $\begin{aligned} & \text { Solve real-world problems involving systems of linear } \\ & \text { equations and inequalities in two and three variables. }\end{aligned}$ equations and inequalities in two and three variables.

Moderate
High
Moderate

High

MA.912.A.5.2 Add, subtract, multiply, and divide rational expressions. Moderate

MA.912.A.5.3 Simplify complex fractions. Moderate
MA.912.A.5.4 Solve algebraic proportions. Low

MA.912.A.5.5 Solve rational equations. Moderate

MA.912.A.5.7 $\begin{aligned} & \text { Solve real-world problems involving rational equations } \\ & \text { (mixture, distance, work, interest, and ratio). }\end{aligned}$ High

MA.912.A.6.1 Simplify radical expressions Moderate

MA.912.A.6.2 Add, subtract, multiply, and divide radical expressions (square roots and higher).

Moderate

MA.912.A.7.1 Graph quadratic equations with and without graphing technology.

Moderate

MA.912.A.7.2 $\begin{aligned} & \text { Solve quadratic equations over the real numbers by } \\ & \text { factoring and by using the quadratic formula. }\end{aligned}$ Moderate
$\begin{array}{ll}\text { MA.912.A.7.6 } & \begin{array}{l}\text { Identify the axis of symmetry, vertex, domain, range and } \\ \text { intercept(s) for a given parabola. }\end{array} \\ \text { Low }\end{array}$

MA.912.A.7.8 Use quadratic equations to solve real-world problems. Moderate
MA.912.A.7.10 $\begin{aligned} & \text { Use graphing technology to find approximate solutions of } \\ & \text { quadratic equations. }\end{aligned}$

Use a variety of problem-solving strategies, such as
MA.912.A.10.1 $\begin{aligned} & \text { drawing a diagram, making a chart, guessing- and- }\end{aligned}$ checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

MA.912.A.10.2 Decide whether a solution is reasonable in the context of the original situation.

Decide whether a given statement is always, sometimes, MA.912.A. 10.3 or never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical High expressions, or logarithmic or exponential functions).

MA.912.D.7.1 $\begin{aligned} & \text { Perform set operations such as union and intersection, } \\ & \text { complement, and cross product. }\end{aligned}$

MA.912.D.7.2 Use Venn diagrams to explore relationships and patterns and to make arguments about relationships between sets.

Moderate

MA.912.G.1.4 $\begin{aligned} & \text { Use coordinate geometry to find slopes, parallel lines, Moderate } \\ & \text { perpendicular lines, and equations of lines. }\end{aligned}$

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1200330
Number:	
Course Title:	Algebra 2
Course	Year
Length:	

Course Status: State Board Approved

ASSESSMENT
Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3

Assessment:

- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A.2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

RELATED BENCHMARKS (43) :

Scheme	Descriptor	Cognitive Complexity
LA.910.1.6.1	The student will use new vocabulary that is introduced and taught directly;	

LA.910.4.2.1 The student will write in a variety of
informational/expository forms, including a variety of technical documents (e.g., how-to-manuals, procedures, assembly directions);

MA.912.A.1.6
Identify the real and imaginary parts of complex numbers and perform basic operations.

Moderate

MA.912.A.2.5
Graph absolute value equations and inequalities in two variables.

Moderate

Identify and graph common functions (including but not
MA.912.A.2.6 limited to linear, rational, quadratic, cubic, radical, absolute Moderate value).

Perform operations (addition, subtraction, division, and
MA.912.A.2.7 multiplication) of functions algebraically, numerically, and Moderate graphically.

MA.912.A.2.8 Determine the composition of functions. Low

MA.912.A.2.10 Describe and graph transformations of functions Moderate

MA.912.A.2.11 Solve problems involving functions and their inverses.
High

MA.912.A.2.12 Solve problems using direct, inverse, and joint variations. High

MA.912.A.3.3 Solve literal equations for a specified variable. Moderate

MA.912.A.3.6
Solve and graph the solutions of absolute value equations and inequalities with one variable.

Moderate

Write an equation of a line given any of the following information: two points on the line, its slope and one point
MA.912.A.3.10 on the line, or its graph. Also, find an equation of a new Moderate line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Solve systems of linear equations and inequalities in two
MA.912.A.3.14 and three variables using graphical, substitution, and Moderate elimination methods.

MA.912.A.3.15 Solve real-world problems involving systems of linear equations and inequalities in two and three variables.

High

MA.912.A.4.3 Factor polynomial expressions.
Moderate
$\begin{array}{ll}\text { MA.912.A.4.4 } & \begin{array}{l}\text { Divide polynomials by monomials and polynomials with } \\ \text { various techniques, including synthetic division. }\end{array}\end{array}$
Moderate

MA.912.A.4.5 Graph polynomial functions with and without technology and describe end behavior.

Moderate

Use theorems of polynomial behavior (including but not limited to the Fundamental Theorem of Algebra,
MA.912.A.4.6 Remainder Theorem, the Rational Root Theorem, Moderate Descartes' Rule of Signs, and the Conjugate Root Theorem) to find the zeros of a polynomial function.

MA.912.A.4.7 $\begin{aligned} & \text { Write a polynomial equation for a given set of real and/or } \\ & \text { complex roots. }\end{aligned}$
Moderate

Describe the relationships among the solutions of an
MA.912.A.4.8 equation, the zeros of a function, the x-intercepts of a graph, and the factors of a polynomial expression with and without technology.

MA.912.A.4.9 Use graphing technology to find approximate solutions for polynomial equations.

MA.912.A.4.10 Use polynomial equations to solve real-world problems.

MA.912.A.5.2 Add, subtract, multiply, and divide rational expressions. Moderate

MA.912.A.5.3 Simplify complex fractions. Moderate

MA.912.A.5.5 Solve rational equations.
Moderate

MA.912.A.6.2
Add, subtract, multiply, and divide radical expressions (square roots and higher).

Moderate
MA.912.A.6.3 Simplify expressions using properties of rational exponents.
Convert between rational exponent and radical forms of expressions.
Low
MA.912.A.6.5 Solve equations that contain radical expressions. ModerateSolve quadratic equations over the real numbers by Moderatecompleting the square.
Low
MA.912.A.7.4 Use the discriminant to determine the nature of the roots ofa quadratic equation.
MA.912.A.7.5 Solve quadratic equations over the complex number system.
ModerateIdentify the axis of symmetry, vertex, domain, range andMA.912.A.7.6intercept(s) for a given parabola.
Low
MA.912.A.8.1 Define exponential and logarithmic functions and determine their relationshipDefine and use the properties of logarithms to simplify
MA.912.A.8.2 logarithmic expressions and to find their approximate Low values.
MA.912.A.8.3 Graph exponential and logarithmic functions. Moderate
MA.912.A.8.5 Solve logarithmic and exponential equations. Moderate
MA.912.A.8.6 Use the change of base formula. Low
MA.912.A.8.7 Solve applications of exponential growth and decay. HighDecide whether a given statement is always, sometimes, or
MA.912.A.10.3 never true (statements involving linear or quadraticexpressions, equations, or inequalities, rational or radicalHighexpressions, or logarithmic or exponential functions).

MA.912.D.11.1 Define arithmetic and geometric sequences and series. Low

MA.912.D.11.3 Find specified terms of arithmetic and geometric Low $\begin{aligned} & \text { sequences. }\end{aligned}$

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1200340
Number:	
Course Title: Course	Algebra 2 Honors
Length:	Year
Course Status: State Board Approved Honors? Yes	

ASSESSMENT

Teachers whose students will take the American Diploma
Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at:
http://www.achieve.org/node/867.
The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3

Assessment:

- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A.2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

RELATED BENCHMARKS (49) :

Scheme Descriptor

Cognitive Complexity

The student will use new vocabulary that is introduced and taught directly;

The student will write in a variety of
LA.910.4.2.1 informational/expository forms, including a variety of technical documents (e.g., how-to-manuals, procedures, assembly directions);

MA.912.A.1. $6 \begin{aligned} & \text { Identify the real and imaginary parts of complex numbers } \\ & \text { and perform basic operations. }\end{aligned}$ Moderate

Graph absolute value equations and inequalities in two variables.

Moderate
MA.912.A.2.5

Identify and graph common functions (including but not
MA.912.A.2.6 limited to linear, rational, quadratic, cubic, radical, Moderate absolute value).

Perform operations (addition, subtraction, division, and
MA.912.A.2.7 multiplication) of functions algebraically, numerically, and Moderate graphically.

MA.912.A.2.8 Determine the composition of functions. Low

MA.912.A.2.9 Recognize, interpret, and graph functions defined piecewise with and without technology.

MA.912.A.2.10 Describe and graph transformations of functions Moderate

MA.912.A.2.11 Solve problems involving functions and their inverses. High

MA.912.A.2.12 Solve problems using direct, inverse, and joint variations. High

Solve systems of linear equations and inequalities in two
MA.912.A.3.14 and three variables using graphical, substitution, and Moderate elimination methods.

MA.912.A.3.15 Solve real-world problems involving systems of linear equations and inequalities in two and three variables.

MA.912.A.4.3 Factor polynomial expressions.
High

MA.912.A.4.4 Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

Moderate

Moderate

MA.912.A.4.5 Graph polynomial functions with and without technology and describe end behavior.

Use theorems of polynomial behavior (including but not limited to the Fundamental Theorem of Algebra,
MA.912.A.4.6 Remainder Theorem, the Rational Root Theorem, Moderate Descartes' Rule of Signs, and the Conjugate Root Theorem) to find the zeros of a polynomial function.

MA.912.A.4.7 Write a polynomial equation for a given set of real and/or complex roots.

Moderate

Describe the relationships among the solutions of an
MA.912.A.4.8
equation, the zeros of a function, the x-intercepts of a graph, and the factors of a polynomial expression with and without technology.

MA.912.A.4.9 $\begin{aligned} & \text { Use graphing technology to find approximate solutions for } \\ & \text { polynomial equations. }\end{aligned}$

MA.912.A.4. 10 Use polynomial equations to solve real-world problems. Moderate

MA.912.A.4.11 $\begin{aligned} & \text { Solve a polynomial inequality by examining the graph } \\ & \text { with and without the use of technology. }\end{aligned}$ Moderate

MA.912.A.4.12 Apply the Binomial Theorem.
Moderate

Identify removable and non-removable discontinuities,
$\begin{array}{ll}\text { MA.912.A.5.6 } & \begin{array}{l}\text { and vertical, horizontal, and oblique asymptotes of a graph Moderate } \\ \text { of a rational function, find the zeros, and graph the } \\ \text { function. }\end{array}\end{array}$

MA.912.A.6.2 $\begin{aligned} & \text { Add, subtract, multiply, and divide radical expressions } \\ & \text { (square roots and higher). }\end{aligned}$ (square roots and higher).

Moderate

Simplify expressions using properties of rational exponents.

MA.912.A.6.4 $\begin{aligned} & \text { Convert between rational exponent and radical forms of } \\ & \text { expressions. }\end{aligned}$

MA.912.A.6.5 Solve equations that contain radical expressions.
Moderate

MA.912.A.7.3 $\begin{aligned} & \text { Solve quadratic equations over the real numbers by Moderate } \\ & \text { completing the square. }\end{aligned}$ completing the square.

MA.912.A.7.4 $\begin{aligned} & \text { Use the discriminant to determine the nature of the roots Low } \\ & \text { of a quadratic equation. }\end{aligned}$
MA.912.A.7.5 Solve quadratic equations over the complex number system.

Moderate

Identify the axis of symmetry, vertex, domain, range and intercept(s) for a given parabola.

MA.912.A.7.7 $\begin{aligned} & \text { Solve non-linear systems of equations with and without } \\ & \text { using technology. }\end{aligned}$
High

MA.912.A.7.10 Use graphing technology to find approximate solutions of quadratic equations.

Low

Define exponential and logarithmic functions and determine their relationship

Moderate

Define and use the properties of logarithms to simplify
$\begin{array}{ll}\text { MA.912.A.8.2 } & \begin{array}{l}\text { logarithmic expressions and to find their approximate } \\ \text { values. }\end{array}\end{array}$

MA.912.A.8.3 Graph exponential and logarithmic functions.
Moderate

MA.912.A.8.5 Solve logarithmic and exponential equations.
Moderate

MA.912.A.8.6 Use the change of base formula. Low

MA.912.A.8.7 Solve applications of exponential growth and decay. High

Write the equations of conic sections in standard form and
MA.912.A.9.1 general form, in order to identify the conic section and to find its geometric properties (foci, asymptotes, eccentricity, etc.).

MA.912.A.9.2 $\begin{aligned} & \text { Graph conic sections with and without using graphing } \\ & \text { technology. }\end{aligned}$ Moderate technology.

Decide whether a given statement is always, sometimes, or
MA.912.A.10.3 never true (statements involving linear or quadratic
expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

MA.912.D.11.1 Define arithmetic and geometric sequences and series. Low
MA.912.D.11.2 Use sigma notation to describe series. Low

MA.912.D.11.3 Find specified terms of arithmetic and geometric Low $\begin{aligned} & \text { Lequences. }\end{aligned}$
Find partial sums of arithmetic and geometric series, and
MA.912.D.11.4 find sums of infinite convergent geometric series. Use Moderate Sigma notation where applicable.

Given the center and the radius, find the equation of a
MA.912.G.6.6 circle in the coordinate plane or given the equation of a circle in center-radius form, state the center and the radius of the circle.

Given the equation of a circle in center-radius form or
MA.912.G.6.7 given the center and the radius of a circle, sketch the graph Moderate of the circle.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1200370
Number:	
Course Title:	Algebra 1-A
Course	Year
Length:	

Course Status: State Board Approved

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3

Assessment:

- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A.2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

RELATED BENCHMARKS (31) :

Scheme	Descriptor	Cognitive Complexity
LA.910.1.6.1	The student will use new vocabulary that is introduced and taught directly;	

$$
\begin{aligned}
& \text { LA.910.1.6.3 } \begin{array}{l}
\text { The student will use context clues to determine meanings } \\
\text { of unfamiliar words; }
\end{array}
\end{aligned}
$$

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

Know equivalent forms of real numbers (including integer
MA.912.A.1.1 exponents and radicals, percents, scientific notation, Low absolute value, rational numbers, irrational numbers).

MA.912.A.1.2 Compare real number expressions.
Moderate

MA.912.A.1.3 Simplify real number expressions using the laws of exponents.

Perform operations on real numbers (including integer
MA.912.A.1.4 exponents, radicals, percents, scientific notation, absolute value, rational numbers, irrational numbers) using multistep and real-world problems.

MA.912.A.1.5
Use dimensional (unit) analysis to perform conversions between units of measure, including rates.

Moderate

MA.912.A.2.1 Create a graph to represent a real-world situation. Moderate

MA.912.A.2.2 Interpret a graph representing a real-world situation. Moderate
Describe the concept of a function, use function notation,
MA.912.A.2.3 determine whether a given relation is a function, and link Moderate

MA.912.A.2.4 Determine the domain and range of a relation.
Moderate

MA.912.A.2.13 $\begin{aligned} & \text { Solve real-world problems involving relations and } \\ & \text { functions. }\end{aligned}$
High

MA.912.A.3.1
Solve linear equations in one variable that include simplifying algebraic expressions.

MA.912.A.3.2 Identify and apply the distributive, associative, and

> equations to functions.

Moderate

Moderate
commutative properties of real numbers and the properties of equality.

MA.912.A.3.3 Solve literal equations for a specified variable.
Moderate

MA.912.A.3.4 Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

MA.912.A.3.5 Symbolically represent and solve multi-step and real-world applications that involve linear equations and inequalities.

MA.912.A.3.7 Rewrite equations of a line into slope-intercept form and standard form.

Moderate

Moderate

Low

Graph a line given any of the following information: a table of values, the x - and y -intercepts, two points, the slope and a point, the equation of the line in slope-intercept form, standard form, or point-slope form .

MA.912.A.3. 9
Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.

Write an equation of a line given any of the following information: two points on the line, its slope and one point
MA.912.A.3. 10 on the line, or its graph. Also, find an equation of a new line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Write an equation of a line that models a data set, and use the equation or the graph to make predictions. Describe the
MA.912.A.3.11 slope of the line in terms of the data, recognizing that the slope is the rate of change.

Graph a linear equation or inequality in two variables with
MA.912.A.3.12 and without graphing technology. Write an equation or
Moderate inequality represented by a given graph.

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- andchecking, solving a simpler problem, writing an equation, working backwards, and creating a table.

MA.912.A.10.2 Decide whether a solution is reasonable in the context of the original situation.

Decide whether a given statement is always, sometimes, or
MA.912.A.10.3 never true (statements involving linear or quadratic
expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

MA.912.D.7.1 Perform set operations such as union and intersection, complement, and cross product.

MA.912.D.7.2 Use Venn diagrams to explore relationships and patterns and to make arguments about relationships between sets.

MA.912.G.1.4 $\begin{aligned} & \text { Use coordinate geometry to find slopes, parallel lines, Moderate } \\ & \text { perpendicular lines, and equations of lines. }\end{aligned}$

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1200380
Number:	
Course Title: Algebra 1-B Course Year Length: Course Status: State Board Approved	

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
Assessment:
The Benchmark MA. $912 . A .4 .4$ is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (23) :

Scheme

LA.910.1.6.1
The student will use new vocabulary that is introduced and taught directly;

LA.910.1.6.2
The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

LA.910.3.1.3
The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline,
chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

MA.912.A.1.8
Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Use a graph to approximate the solution of a system of
MA.912.A.3.13 linear equations or inequalities in two variables with and Moderate without technology.

Solve systems of linear equations and inequalities in two MA.912.A.3.14 and three variables using graphical, substitution, and Moderate elimination methods.

MA.912.A.3.15 $\begin{aligned} & \text { Solve real-world problems involving systems of linear } \\ & \text { equations and inequalities in two and three variables. }\end{aligned}$

MA.912.A.4.1 Simplify monomials and monomial expressions using the laws of integral exponents.

MA.912.A.4.2 Add, subtract, and multiply polynomials.
Low

MA.912.A.4.3 Factor polynomial expressions.
Moderate

MA.912.A.4.4 $\begin{aligned} & \text { Divide polynomials by monomials and polynomials with } \\ & \text { various techniques, including synthetic division. }\end{aligned}$

MA.912.A.5.1 Simplify algebraic ratios. Moderate
MA.912.A.5.4 Solve algebraic proportions.
Low

MA.912.A.6.1 Simplify radical expressions Moderate

MA.912.A.6.2 Add, subtract, multiply, and divide radical expressions (square roots and higher).

MA.912.A.7.1 $\begin{aligned} & \text { Graph quadratic equations with and without graphing } \\ & \text { technology. }\end{aligned}$ Moderate

MA.912.A.7.2 $\begin{aligned} & \text { Solve quadratic equations over the real numbers by } \\ & \text { factoring and by using the quadratic formula. }\end{aligned}$ Moderate

MA.912.A.7.8 Use quadratic equations to solve real-world problems. Moderate

MA.912.A.7.10 $\begin{aligned} & \text { Use graphing technology to find approximate solutions of Low } \\ & \text { quadratic equations. }\end{aligned}$

Use a variety of problem-solving strategies, such as
MA.912.A.10.1 drawing a diagram, making a chart, guessing- andchecking, solving a simpler problem, writing an equation, High working backwards, and creating a table.

MA.912.A.10.2 Decide whether a solution is reasonable in the context of the original situation.

Decide whether a given statement is always, sometimes,
MA.912.A. 10.3 or never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1200400
Number:	
Course Title: Course	Intensive Mathematics
Length:	$/ \mathrm{M}$
Course	
Status:	State Board Approved

RELATED BENCHMARKS (2) :

Scheme	Descriptor	Cognitive Complexity
MA.912.T.5.1	Use a variety of problem-solving strategies, such as drawing a diagram, guess-and-check, solving a simpler problem, examining simpler problems, and working backwards, using technology when appropriate.	High
MA.912.T.5.2	Decide whether a solution is reasonable in the context of the original situation.	Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course
Number:
Course Title: Mathematics for College Success
Course
Length:
Semester
Course Status: State Board Approved

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
Assessment:
The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (31) :

Scheme Descriptor

Cognitive Complexity

LA.910.1.6.1 The student will use new vocabulary that is introduced and taught directly;

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

The student will prewrite by using organizational
LA. 910.3 .1.3 strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

Know equivalent forms of real numbers (including integer
MA.912.A.1.1 exponents and radicals, percents, scientific notation, Low absolute value, rational numbers, irrational numbers).

MA.912.A.1.2 Compare real number expressions.
Moderate

MA.912.A.1.3 $\begin{aligned} & \text { Simplify real number expressions using the laws of } \\ & \text { exponents }\end{aligned}$ exponents.

Perform operations on real numbers (including integer
MA.912.A.1.4 $\begin{aligned} & \text { exponents, radicals, percents, scientific notation, absolute } \\ & \text { value, rational numbers, irrational numbers) using multi- }\end{aligned}$ Moderate step and real-world problems.

MA.912.A.3.1 Solve linear equations in one variable that include simplifying algebraic expressions.

Moderate

Identify and apply the distributive, associative, and
MA.912.A.3.2 commutative properties of real numbers and the properties Moderate of equality.

MA.912.A.3.3 Solve literal equations for a specified variable.
Moderate

MA.912.A.3.4
Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

Symbolically represent and solve multi-step and real-
MA.912.A.3.5 world applications that involve linear equations and
Moderate inequalities.

Graph a line given any of the following information: a
MA.912.A.3.8 table of values, the x - and y-intercepts, two points, the slope and a point, the equation of the line in slopeintercept form, standard form, or point-slope form .

MA.912.A.3.9
Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.

Moderate
Moderate

MA.912.A.3.5

MA.912.A.3.8

Write an equation of a line given any of the following
MA.912.A.3.10 information: two points on the line, its slope and one point Moderate on the line, or its graph. Also, find an equation of a new
line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Graph a linear equation or inequality in two variables with
MA.912.A.3.12 and without graphing technology. Write an equation or Moderate inequality represented by a given graph.
$\begin{array}{ll}\text { MA.912.A.4.1 } & \begin{array}{l}\text { Simplify monomials and monomial expressions using the Low } \\ \text { laws of integral exponents. }\end{array}\end{array}$

MA.912.A.4.2 Add, subtract, and multiply polynomials. Low

MA.912.A.4.3 Factor polynomial expressions. Moderate
MA.912.A.4.4 $\begin{aligned} & \text { Divide polynomials by monomials and polynomials with } \\ & \text { various techniques, including synthetic division. }\end{aligned}$ Moderate

MA.912.A.5.1 Simplify algebraic ratios. Moderate
MA.912.A.5.2 Add, subtract, multiply, and divide rational expressions. Moderate

MA.912.A.5.4 Solve algebraic proportions. Low

MA.912.A.5.7 $\begin{aligned} & \text { Solve real-world problems involving rational equations } \\ & \text { (mixture, distance, work, interest, and ratio). }\end{aligned}$ High

MA.912.A.6.1 Simplify radical expressions Moderate

MA.912.A.6.2 $\begin{aligned} & \text { Add, subtract, multiply, and divide radical expressions } \\ & \text { (square roots and higher). }\end{aligned}$ Moderate

Use a variety of problem-solving strategies, such as
MA.912.A.10.1 $\begin{aligned} & \text { drawing a diagram, making a chart, guessing- and- } \\ & \text { checking, solving a simpler problem, writing an equation, }\end{aligned}$ High working backwards, and creating a table.

MA.912.A.10.2 $\begin{aligned} & \text { Decide whether a solution is reasonable in the context of } \\ & \text { the original situation. }\end{aligned}$ the original situation.

MA.912.A.10.3 Decide whether a given statement is always, sometimes, or High
never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

MA.912.D.7.1 Perform set operations such as union and intersection, complement, and cross product.

MA.912.D.7.2 Use Venn diagrams to explore relationships and patterns

Low

Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1200500
Number:	
Course Title:	Advanced Algebra with Financial Applications
Course	Year
Length:	
Course Status:	State Board Approved

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
Assessment:
The Benchmark MA. $912 . A .4 .4$ is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (45) :

Scheme
Descriptor
Cognitive Complexity
The student will prewrite by using organizational
LA.1112.3.1.3 strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

LA.910.1.6.1 The student will use new vocabulary that is introduced and taught directly;

MA.912.A.2.1 Create a graph to represent a real-world situation. Moderate

MA.912.A.2.2 Interpret a graph representing a real-world situation.

Symbolically represent and solve multi-step and real-
MA.912.A.3.5 world applications that involve linear equations and Moderate inequalities.

MA.912.A.3.15 $\begin{aligned} & \text { Solve real-world problems involving systems of linear } \\ & \text { equations and inequalities in two }\end{aligned}$ equations and inequalities in two and three variables.

High

MA.912.A.8.7 Solve applications of exponential growth and decay. High

Use recursive and iterative thinking to solve problems,
MA.912.D.1.1 including identification of patterns, population growth and Moderate decline, and compound interest.
$\begin{array}{ll}\text { MA.912.F.1.1 } & \begin{array}{l}\text { Explain the difference between simple and compound } \\ \text { interest. }\end{array}\end{array}$ Moderate

MA.912.F.1.2 Solve problems involving compound interest.
High

Demonstrate the relationship between simple interest and linear growth.

Moderate
MA.912.F.1.3

MA.912.F.1.4 Demonstrate the relationship between compound interest and exponential growth.
$\begin{array}{ll}\text { MA.912.F.2.1 } & \begin{array}{l}\text { Calculate the future value of a given amount of money } \\ \text { with and without technology. }\end{array}\end{array}$

Calculate the present value of a certain amount of money
MA.912.F.2.2 for a given length of time in the future with and without Moderate technology.
$\begin{array}{ll}\text { MA.912.F.3.1 } & \text { Compare the advantages and disadvantages of using cash } \\ \text { versus a credit card. }\end{array}$ versus a credit card.

Moderate

High

MA.912.F.3.2 Analyze credit scores and reports.

MA.912.F.3.3 $\begin{aligned} & \text { Calculate the finance charges and total amount due on a } \\ & \text { credit card bill. }\end{aligned}$
Moderate

Low

MA.912.F.3.4 $\begin{aligned} & \text { Compare the advantages and disadvantages of deferred High } \\ & \text { payments. }\end{aligned}$

MA.912.F.3.5 Calculate deferred payments.
Moderate

Calculate total cost of purchasing consumer durables over
MA.912.F.3.6 time given different down payments, financing options, Moderate and fees.

Calculate the following fees associated with a mortgage:

- discount points
- origination fee

MA.912.F.3.7 - maximum brokerage fee on a net or gross loan Low

- documentary stamps
- prorated expenses (interest, county and/or city property taxes, and mortgage on an assumed mortgage)

MA.912.F.3.9 Calculate the total amount to be paid over the life of a fixed rate loan.

Moderate

Calculate the effects on the monthly payment in the
MA.912.F.3.10 change of interest rate based on an adjustable rate Moderate mortgage.

MA.912.F.3.11 Calculate the final pay out amount for a balloon mortgage. Moderate

MA.912.F.3.12 Compare the cost of paying a higher interest rate and lower points versus a lower interest rate and more points.

Calculate the total amount paid for the life of a loan for a
MA.912.F.3.13 house including the down payment, points, fees, and Moderate interest.

MA.912.F.3.14
Compare the total cost for a set purchase price using a fixed rate, adjustable rate, and a balloon mortgage.

MA.912.F.3.17 Compare interest rate calculations and annual percentage

Moderate

Moderate

High

MA.912.F.4.1	Develop personal budgets that fit within various income brackets.	Moderate
MA.912.F.4.2	Explain cash management strategies including debit accounts, checking accounts, and savings accounts.	Moderate
MA.912.F.4.3	Calculate net worth.	Low
MA.912.F.4.4	Establish a plan to pay off debt.	High
MA.912.F.4.5	Develop and apply a variety of strategies to use tax tables, and to determine, calculate, and complete yearly federal income tax.	Moderate
MA.912.F.4.6	Compare different insurance options and fees.	High
MA.912.F.4.7	Compare and contrast the role of insurance as a device to mitigate risk and calculate expenses of various options.	Moderate
MA.912.F.4.8	Collect, organize, and interpret data to determine an effective retirement savings plan to meet personal financial goals.	Moderate
MA.912.F.4.9	Calculate, compare, and contrast different types of retirement plans, including IRAs, ROTH accounts, and annuities.	High
MA.912.F.4.10	Analyze diversification in investments.	High
MA.912.F.4.11	Purchase stock with a set amount of money, and follow the process through gains, losses, and selling.	Moderate
MA.912.F.4.12	Compare and contrast income from purchase of common stock, preferred stock, and bonds.	Moderate
MA.912.F.4.13	Given current exchange rates be able to convert from one form of currency to another.	Low

format, and identify possible corrections. Formats to include:

- bar graphs
- line graphs
- stem and leaf plots
- circle graphs
- histograms
- box and whiskers plots
- scatter plots
- cumulative frequency (ogive) graphs

MA.912.S.3.3

MA.912.T.5.1

MA.912.T.5.2

Calculate and interpret measures of the center of a set of data, including mean, median, and weighted mean, and use these measures to make comparisons among sets of data.

Use a variety of problem-solving strategies, such as drawing a diagram, guess-and-check, solving a simpler problem, examining simpler problems, and working backwards, using technology when appropriate.

Decide whether a solution is reasonable in the context of the original situation.

Moderate

High

Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1200700
Number: Course Title:	Mathe
Course Length:	Year

Course Status: State Board Approved

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
Assessment: The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (47) :

Scheme	Descriptor	Cognitive
Complexity		

LA.1112.1.6.1 The student will use new vocabulary that is introduced and taught directly;

The student will use background knowledge of subject and related content areas, prereading strategies (e.g.,
LA.1112.1.7.1 previewing, discussing, generating questions), text features, and text structure to make and confirm complex predictions of content, purpose, and organization of a reading selection;

LA.1112.3.4.1 The student will edit for correct use of spelling, using
spelling rules, orthographic patterns, generalizations, knowledge of root words, prefixes, suffixes, knowledge of Greek, Latin, and Anglo-Saxon root words, and knowledge of foreign words commonly used in English (laissez faire, croissant);

The student will edit for correct use of capitalization,
LA.1112.3.4.2 including names of academic courses and proper adjectives;

The student will edit for correct use of punctuation,

LA.1112.3.4.3 including commas, colons, semicolons, apostrophes, dashes, quotation marks, parentheses, ellipses, brackets, and underlining or italics;

The student will edit for correct use of grammar and usage, including but not limited to parts of speech, verb tense,
LA.1112.3.4.4
noun/pronoun agreement, subject/verb agreement, pronoun/antecedent agreement, parallel structure, modifier placement, comparative and superlative adjectives and adverbs, and unintended shift in person or tense; and

The student will edit for correct use of varied sentence
LA.1112.3.4.5 structure, including the elimination of dangling or misplaced modifiers, run-on or fused sentences, and unintended sentence fragments.

MA.912.A.2.4 Determine the domain and range of a relation. Moderate

MA.912.A.2.5 Graph absolute value equations and inequalities in two variables.

Moderate

Identify and graph common functions (including but not
MA.912.A.2.6 limited to linear, rational, quadratic, cubic, radical,
Moderate absolute value).

MA.912.A.2.8 Determine the composition of functions.
Low

Recognize, interpret, and graph functions defined piecewise with and without technology.

MA.912.A.2.10 Describe and graph transformations of functions

MA.912.A.2.11 Solve problems involving functions and their inverses. High

MA.912.A.2.12 Solve problems using direct, inverse, and joint variations. High

MA.912.A.2.13 Solve real-world problems involving relations and functions.

High

Use theorems of polynomial behavior (including but not limited to the Fundamental Theorem of Algebra,
MA.912.A.4.6 Remainder Theorem, the Rational Root Theorem, Moderate Descartes' Rule of Signs, and the Conjugate Root Theorem) to find the zeros of a polynomial function.

MA.912.A.4.7 Write a polynomial equation for a given set of real and/or complex roots.

Describe the relationships among the solutions of an
MA.912.A.4.8
equation, the zeros of a function, the x-intercepts of a graph, and the factors of a polynomial expression with and without technology.

MA.912.A.5.1 Simplify algebraic ratios. Moderate

MA.912.A.5.2 Add, subtract, multiply, and divide rational expressions. Moderate

MA.912.A.5.3 Simplify complex fractions.
Moderate

MA.912.A.5.5 Solve rational equations. Moderate

Identify removable and non-removable discontinuities, and
MA.912.A.5.6 vertical, horizontal, and oblique asymptotes of a graph of a Moderate rational function, find the zeros, and graph the function.

MA.912.A.5.7 $\quad \begin{aligned} & \text { Solve real-world problems involving rational equations }\end{aligned}$ (mixture, distance, work, interest, and ratio).

MA.912.A.6.1 Simplify radical expressions Moderate

MA.912.A.6.2 Add, subtract, multiply, and divide radical expressions Moderate
(square roots and higher).
$\begin{array}{lll}\text { MA.912.A.6.3 } & \begin{array}{l}\text { Simplify expressions using properties of rational } \\ \text { exponents. }\end{array} & \text { Low } \\ \text { MA.912.A.6.4 } & \begin{array}{l}\text { Convert between rational exponent and radical forms of } \\ \text { expressions. }\end{array} & \text { Low }\end{array}$

MA.912.A.6.5 Solve equations that contain radical expressions. Moderate
MA.912.A.7.5 $\begin{aligned} & \text { Solve quadratic equations over the complex number } \\ & \text { system. }\end{aligned} \quad$ Moderate

MA.912.A.7.7 $\begin{aligned} & \text { Solve non-linear systems of equations with and without High } \\ & \text { using technology. }\end{aligned}$

MA.912.A.7.8 Use quadratic equations to solve real-world problems. Moderate

MA.912.A.7.10 Use graphing technology to find approximate solutions of quadratic equations.

Define and use the properties of logarithms to simplify
$\begin{array}{ll}\text { MA.912.A.8.2 } & \begin{array}{l}\text { logarithmic expressions and to find their approximate } \\ \text { values. }\end{array}\end{array}$

MA.912.A.8.3 Graph exponential and logarithmic functions. Moderate

MA.912.A.8.5 Solve logarithmic and exponential equations. Moderate

MA.912.A.8.6 Use the change of base formula. Low

Use matrices to organize and store data. Perform matrix
MA.912.D.8.1 $\begin{aligned} & \text { operations (addition, subtraction, scalar multiplication, Low } \\ & \text { multiplication) }\end{aligned}$
MA.912.D.8.2 Use matrix operations to solve problems. Moderate

MA.912.D.8.4 Find the inverse of a matrix, and use the inverse to solve problems with and without the use of technology.

High
$\begin{array}{ll}\text { MA.912.F.1.1 } & \begin{array}{l}\text { Explain the difference between simple and compound } \\ \text { interest. }\end{array}\end{array}$

MA.912.F.1.2 Solve problems involving compound interest. High

MA.912.F.1.3 Demonstrate the relationship between simple interest and Moderate linear growth.

MA.912.F.1.4 Demonstrate the relationship between compound interest and exponential growth.

Moderate

MA.912.F.2.1 $\begin{aligned} & \text { Calculate the future value of a given amount of money } \\ & \text { with and without technology. }\end{aligned}$ Moderate

Calculate and interpret measures of the center of a set of
MA.912.S.3.3 data, including mean, median, and weighted mean, and use Moderate these measures to make comparisons among sets of data.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1200990
Number:	
Course Title:	Mathematics Transfer
Course Length:	$/ Z$
Course	
Status:	State Board Approved

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at:
http://www.achieve.org/node/867.
The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A.2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

Florida Department of Education
 COURSE DESCRIPTION GRADES 9-12

Course	1201300
Number:	
Course Title:	Mathematical Analysis
Number of Credits:	One credit (1)
Course	
Length:	Year
Course Type:	Core
Course Level:	3
Course Status:	State Board Approved

RELATED BENCHMARKS (46) :

Scheme
LA.1112.1.6.

Descriptor
Cognitive
Complexity
The student will use new vocabulary that is introduced and taught directly;

The student will use background knowledge of subject and related content areas, prereading strategies (e.g.,

LA.1112.1.7.1 previewing, discussing, generating questions), text features, and text structure to make and confirm complex predictions of content, purpose, and organization of a reading selection;

LA.1112.1.7.4
The student will identify cause-and-effect relationships in text;

The student will prewrite by making a plan for writing
LA.1112.3.1.2 that addresses purpose, audience, a controlling idea, logical sequence, and time frame for completion; and

The student will prewrite by using organizational
LA.1112.3.1.3 strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

The student will draft writing by establishing a logical

> LA.1112.3.2.2 organizational pattern with supporting details that are substantial, specific, and relevant; and

MA.912.A.2.1 Create a graph to represent a real-world situation. Moderate

MA.912.A.2.2 Interpret a graph representing a real-world situation. Moderate
MA.912.A.2.4 Determine the domain and range of a relation. Moderate

Identify and graph common functions (including but not
MA.912.A.2.6 limited to linear, rational, quadratic, cubic, radical, Moderate absolute value).

MA.912.A.2.9 Recognize, interpret, and graph functions defined piecewise with and without technology.

MA.912.A.2.10 Describe and graph transformations of functions Moderate

Solve systems of linear equations and inequalities in two
MA.912.A.3.14 and three variables using graphical, substitution, and Moderate elimination methods.

MA.912.A.3.15 $\begin{aligned} & \text { Solve real-world problems involving systems of linear } \\ & \text { equations and inequalities in two and three variables. }\end{aligned}$ equations and inequalities in two and three variables.

MA.912.A.4.5 $\begin{aligned} & \text { Graph polynomial functions with and without technology } \\ & \text { and describe end behavior. }\end{aligned}$
Moderate

Use theorems of polynomial behavior (including but not
limited to the Fundamental Theorem of Algebra,
$\begin{array}{ll}\text { MA.912.A.4.6 } & \begin{array}{l}\text { Remainder Theorem, the Rational Root Theorem, } \\ \text { Descartes' Rule of Signs, and the Conjugate Root } \\ \text { Theorem) to find the zeros of a polynomial function. }\end{array}\end{array}$

MA.912.A.4.7 $\begin{aligned} & \text { Write a polynomial equation for a given set of real and/or Moderate } \\ & \text { complex roots. }\end{aligned}$

MA.912.A.4.8 Describe the relationships among the solutions of an
Moderate
graph, and the factors of a polynomial expression with and without technology.

MA.912.A.4.9 $\begin{aligned} & \text { Use graphing technology to find approximate solutions for } \\ & \text { polynomial equations. }\end{aligned}$ polynomial equations.

MA.912.A.4.10 Use polynomial equations to solve real-world problems. Moderate

Identify removable and non-removable discontinuities,
MA.912.A.5.6 and vertical, horizontal, and oblique asymptotes of a graph of a rational function, find the zeros, and graph the Moderate function.

MA.912.A.5.7 $\begin{aligned} & \text { Solve real-world problems involving rational equations } \\ & \text { (mixture, distance, work, interest, and ratio). }\end{aligned}$ High

MA.912.A.8.3 Graph exponential and logarithmic functions. Moderate

MA.912.C.1.1 $\begin{aligned} & \text { Understand the concept of limit and estimate limits from } \\ & \text { graphs and tables of values. }\end{aligned}$ Moderate

MA.912.C.1.2 Find limits by substitution. Low

MA.912.C.1.3 Find limits of sums, differences, products, and quotients. Low

MA.912.C.1.4 | Find limits of rational functions that are undefined at a |
| :--- |
| point. |

MA.912.C.1.9 Understand continuity in terms of limits.
High

MA.912.C.1.10 Decide if a function is continuous at a point.
High

MA.912.C.1.11 Find the types of discontinuities of a function.
Moderate

Use mathematical induction to prove various concepts in number theory (such as sums of infinite integer series, divisibility statements, and parity statements), recurrence High relations, and other applications.

Construct logical arguments using laws of detachment
MA.912.D.6.6 (modus ponens), syllogism, tautology, and contradiction; judge the validity of arguments, and give counterexamples to disprove statements.

MA.912.D.8.2 Use matrix operations to solve problems.
Moderate

MA.912.D.8.3 Use row-reduction techniques to solve problems. Moderate

MA.912.D.8.4 Find the inverse of a matrix, and use the inverse to solve problems with and without the use of technology.

MA.912.D.8.6 Use matrices to solve Markov chain problems that link present events to future events using probabilities.

Find partial sums of arithmetic and geometric series, and
MA.912.D.11.4 find sums of infinite convergent geometric series. Use
Moderate Sigma notation where applicable.

Use counting principles, including the addition and the
MA.912.P.1.1 multiplication principles, to determine size of finite
High sample spaces and probabilities of events in those spaces.

MA.912.P.1.2
Use formulas for permutations and combinations to count outcomes and determine probabilities of events.

Understand and use the concept of conditional probability,
MA.912.P.2.3
including: understanding how conditioning affects the probability of events and finding conditional probabilities from a two-way frequency table.

MA.912.P.3.3 Apply the properties of the normal distribution. Moderate

Calculate and interpret measures of the center of a set of data, including mean, median, and weighted mean, and
MA.912.S.3.3 use these measures to make comparisons among sets of data.

Calculate and interpret measures of variance and standard
MA.912.S.3.4 deviation. Use these measures to make comparisons Moderate among sets of data.

Use empirical rules such as the 68-95-99.7 rule to
MA.912.S.3.6 estimate spread of distributions and to make comparisons Moderate among sets of data.

Determine whether a data distribution is symmetric or
MA.912.S.3.8 skewed based on an appropriate graphical presentation of Low the data.

Identify outliers in a set of data based on an appropriate
MA.912.S.3.9 graphical presentation of the data, and describe the effect Moderate of outliers on the mean, median, and range of the data.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1201310
Number:	
Course Title:	Analysis of Functions
Number of Credits:	One credit (1)
Course	
Length:	Year
Course Type:	Core
Course Level:	3
Course Status:	State Board Approved

RELATED BENCHMARKS (30) :

Scheme Descriptor

Cognitive
 Complexity

LA.1112.1.6.1 The student will use new vocabulary that is introduced and taught directly;

The student will use background knowledge of subject and related content areas, prereading strategies (e.g.,

LA.1112.1.7.1 previewing, discussing, generating questions), text features, and text structure to make and confirm complex predictions of content, purpose, and organization of a reading selection;

LA.1112.1.7.4
The student will identify cause-and-effect relationships in text;

The student will prewrite by making a plan for writing
LA.1112.3.1.2 that addresses purpose, audience, a controlling idea, logical sequence, and time frame for completion; and

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet,
LA.1112.3.1.3 outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

The student will draft writing by establishing a logical

> LA.1112.3.2.2 organizational pattern with supporting details that are substantial, specific, and relevant; and

MA.912.A.2.1 Create a graph to represent a real-world situation. Moderate

MA.912.A.2.2 Interpret a graph representing a real-world situation. Moderate

MA.912.A.2.4 Determine the domain and range of a relation. Moderate

Identify and graph common functions (including but not
MA.912.A.2.6 limited to linear, rational, quadratic, cubic, radical, Moderate absolute value).

MA.912.A.2.9 Recognize, interpret, and graph functions defined piecewise with and without technology.

Moderate

MA.912.A.2.10 Describe and graph transformations of functions Moderate
MA.912.A.2.11 Solve problems involving functions and their inverses. High

MA.912.A.2.13 Solve real-world problems involving relations and High
functions.

MA.912.A.4.5 $\begin{aligned} & \text { Graph polynomial functions with and without technology } \\ & \text { and describe end behavior. }\end{aligned}$

Use theorems of polynomial behavior (including but not limited to the Fundamental Theorem of Algebra,
$\begin{array}{ll}\text { MA.912.A.4.6 } & \begin{array}{l}\text { Remainder Theorem, the Rational Root Theorem, } \\ \text { Descartes' Rule of Signs, and the Conjugate Root } \\ \text { Theorem) to find the zeros of a polynomial function. }\end{array}\end{array}$

MA.912.A.4.7 Write a polynomial equation for a given set of real and/or complex roots.

Describe the relationships among the solutions of an
MA.912.A.4.8 $\begin{aligned} & \text { equation, the zeros of a function, the x-intercepts of a } \\ & \text { graph, and the factors of a polynomial expression with }\end{aligned}$ and without technology.

MA.912.A.4.9 $\begin{aligned} & \text { Use graphing technology to find approximate solutions } \\ & \text { for polynomial equations. }\end{aligned}$

MA.912.A.4.10 Use polynomial equations to solve real-world problems. Moderate

Identify removable and non-removable discontinuities,
MA.912.A.5.6 and vertical, horizontal, and oblique asymptotes of a graph of a rational function, find the zeros, and graph the function.

MA.912.A.5.7 $\begin{aligned} & \text { Solve real-world problems involving rational equations } \\ & \text { (mixture, distance, work, interest, and ratio). }\end{aligned}$ High

MA.912.A.8.3 Graph exponential and logarithmic functions. Moderate

MA.912.A.8.7 Solve applications of exponential growth and decay.
High

MA.912.T.1.1 Convert between degree and radian measures.
Moderate

MA.912.T.1.4
Find approximate values of trigonometric and inverse trigonometric functions using appropriate technology.

Define and graph trigonometric functions using domain,
MA.912.T.1.6 range, intercepts, period, amplitude, phase shift, vertical shift, and asymptotes with and without the use of graphing technology.

MA.912.T.1.7 Define and graph inverse trigonometric relations and functions.

Low

High

Moderate

Solve real-world problems involving applications of
MA.912.T.1.8 trigonometric functions using graphing technology when High appropriate.

Define and use the trigonometric ratios (sine, cosine,
MA.912.T.2.1 tangent, cotangent, secant, cosecant) in terms of angles of Moderate right triangles.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1201320
Course Title:	International Baccalaureate Math Analysis
Number of Credits:	One credit (1)
Course Length:	Year
Course Status:	State Board Approved
IB?	Yes
International Baccalaureate	

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1202300
Number:	
Course Title:	Calculus
Number of Credits:	One credit (1)
Course Length: Course Status:	State Board Approved

RELATED BENCHMARKS (40) :

Scheme
LA.1112.1.6.1
The student will use new vocabulary that is introduced and taught directly;

LA.1112.1.6.9 The student will determine the correct meaning of words with multiple meanings in context;

The student will organize information to show understanding or relationships among facts, ideas, and
LA.1112.2.2.3 events (e.g., representing key points within text through charting, mapping, paraphrasing, summarizing, comparing, contrasting, outlining);

MA.912.C.1.6 Find limits at infinity.

Descriptor
Cognitive Complexity

Decide when a limit is infinite and use limits involving infinity to describe asymptotic behavior.

MA.912.C.1.8
Find special limits such as $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
Understand the concept of derivative geometrically,
MA.912.C.2.1
MA.912.C.1.7 numerically, and analytically, and interpret the derivative as an instantaneous rate of change or as the slope of the tangent line.

Moderate

Moderate

Moderate

High

MA.912.C.2.2 State, understand, and apply the definition of derivative. Moderate

MA.912.C.2.3 Find the derivatives of functions, including algebraic, trigonometric, logarithmic, and exponential functions.

MA.912.C.2.4 Find the derivatives of sums, products, and quotients. Low

MA.912.C.2.5 Find the derivatives of composite functions using the Chain Rule.

MA.912.C.2.6 Find the derivatives of implicitly-defined functions. Moderate

MA.912.C.2.7 Find derivatives of inverse functions.
Moderate

MA.912.C.2.8 Find second derivatives and derivatives of higher order. Low

MA.912.C.2.9 Find derivatives using logarithmic differentiation. Moderate

MA.912.C.2.10 $\begin{aligned} & \text { Understand and use the relationship between Moderate } \\ & \text { differentiability and continuity. }\end{aligned}$ differentiability and continuity.

MA.912.C.2.11 Understand and apply the Mean Value Theorem. Moderate
$\begin{array}{ll}\text { MA.912.C.3.1 } & \begin{array}{l}\text { Find the slope of a curve at a point, including points at } \\ \text { which there are vertical tangent lines and no tangent lines. }\end{array}\end{array}$
Moderate

MA.912.C.3.2 Find an equation for the tangent line to a curve at a point and a local linear approximation.

Moderate

Decide where functions are decreasing and increasing.
MA.912.C.3.3 Understand the relationship between the increasing and Moderate decreasing behavior of f and the sign of f^{\prime}.

MA.912.C.3.4 Find local and absolute maximum and minimum points. Moderate

Find points of inflection of functions. Understand the
$\begin{array}{ll}\text { MA.912.C.3.5 } & \begin{array}{l}\text { relationship between the concavity of } \mathrm{f} \text { and the sign of } \mathrm{f} " . \\ \\ \text { Understand points of inflection as places where concavity }\end{array}\end{array}$ changes.

Use first and second derivatives to help sketch graphs.
MA.912.C.3.6 Compare the corresponding characteristics of the graphs High of f, f^{\prime}, and $\mathrm{f}^{\prime \prime}$.
$\begin{array}{ll}\text { MA.912.C.3.7 } & \begin{array}{l}\text { Use implicit differentiation to find the derivative of an } \\ \text { inverse function. }\end{array} \text { Moderate }\end{array}$

MA.912.C.3.8 Solve optimization problems.
Moderate

Find average and instantaneous rates of change. Understand the instantaneous rate of change as the limit
MA.912.C.3.9 of the average rate of change. Interpret a derivative as a Moderate rate of change in applications, including velocity, speed, and acceleration.

MA.912.C.3.10 $\begin{aligned} & \text { Find the velocity and acceleration of a particle moving in } \\ & \text { a straight line. }\end{aligned}$
Moderate

MA.912.C.3.11 Model rates of change, including related rates problems.
High

Use rectangle approximations to find approximate values of integrals.

Low

Calculate the values of Riemann Sums over equal
MA.912.C.4.2 subdivisions using left, right, and midpoint evaluation Low points.

MA.912.C.4.3 Interpret a definite integral as a limit of Riemann sums. Moderate

Interpret a definite integral of the rate of change of a quantity over an interval as the change of the quantity
MA.912.C.4.4
over the interval. That is, $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$ (Fundamental Theorem of Calculus).

High

Use the Fundamental Theorem of Calculus to evaluate
MA.912.C.4.5 definite and indefinite integrals and to represent particular antiderivatives. Perform analytical and graphical analysis of functions so defined.

Use these properties of definite integrals:

MA.912.C.4.6

- $\int_{a}^{b}[\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})] \mathrm{dx}=\int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{a}^{b} \mathrm{~g}(\mathrm{x}) \mathrm{dx}$
- $\int_{a \mathrm{k}}^{b} \cdot \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{k} \int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
- $\int_{a}^{a} \mathrm{f}(\mathrm{x}) \mathrm{dx}=0$

Low

- $\int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx}=-\int_{b}^{a} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
- $\int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{b}^{c} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{a}^{c} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
- If $\mathrm{f}(\mathrm{x}) \leq \mathrm{g}(\mathrm{x})$ on $[\mathrm{a}, \mathrm{b}]$, then $\int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx} \leq \int_{a}^{b} \mathrm{~g}(\mathrm{x}) \mathrm{dx}$

MA.912.C.4.7 Use integration by substitution (or change of variable) to find values of integrals.

Use Riemann Sums, the Trapezoidal Rule, and
MA.912.C.4.8
technology to approximate definite integrals of functions represented algebraically, geometrically, and by tables of values.

Find specific antiderivatives using initial conditions, including finding velocity functions from acceleration
MA.912.C.5.1 functions, finding position functions from velocity Moderate functions, and solving applications related to motion along a line.

MA.912.C.5.5
Use definite integrals to find the area between a curve and the x -axis or between two curves.

Use definite integrals to find the volume of a solid with
MA.912.C.5.7 known cross-sectional area, including solids of
High High revolution.
revolution.

Apply integration to model, and solve problems in physical, biological, and social sciences.

Moderate

Moderate

Moderate

Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	
Number:	1202310
Course	
Title:	Advanced Placement Calculus AB
Course	
Length:	Year
Course	
Status:	State Board Approved
AP?	
Advanced	Yes
Placement	
General	The course descriptions for Advanced Placement courses are located on the
Notes:	College Board site at

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	
Number:	1202320
Course	
Title:	Advanced Placement Calculus BC
Course	
Length:	Year
Course	
Status:	State Board Approved
AP?	
Advanced	Yes
Placement	
General	The course descriptions for Advanced Placement courses are located on the
Notes:	College Board site at

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	
Number:	1202320
Course	
Title:	Advanced Placement Calculus BC
Course	
Length:	Year
Course	
Status:	State Board Approved
AP?	
Advanced	Yes
Placement	
General	The course descriptions for Advanced Placement courses are located on the
Notes:	College Board site at

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1202340
Number:	
Course Title:	Pre-Calculus
Number of Credits:	One credit (1)
Course Length: Course Status:	Year

RELATED BENCHMARKS (53) :

Scheme

LA.1112.1.6.1
The student will use new vocabulary that is introduced and taught directly;

The student will use background knowledge of subject and related content areas, prereading strategies (e.g.,

The student will identify cause-and-effect relationships in text;

The student will prewrite by making a plan for writing that
LA.1112.3.1.2 addresses purpose, audience, a controlling idea, logical sequence, and time frame for completion; and

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

The student will draft writing by establishing a logical
LA.1112.3.2.2 organizational pattern with supporting details that are substantial, specific, and relevant; and

MA.912.A.4.5 $\begin{aligned} & \text { Graph polynomial functions with and without technology } \\ & \text { and describe end behavior. }\end{aligned}$ Moderate

Use theorems of polynomial behavior (including but not limited to the Fundamental Theorem of Algebra,
MA.912.A.4.6 Remainder Theorem, the Rational Root Theorem, Moderate Descartes' Rule of Signs, and the Conjugate Root Theorem) to find the zeros of a polynomial function.

MA.912.A.4.7 $\begin{aligned} & \text { Write a polynomial equation for a given set of real and/or Moderate } \\ & \text { complex roots. }\end{aligned}$

Describe the relationships among the solutions of an
MA.912.A.4.8 equation, the zeros of a function, the x-intercepts of a graph, and the factors of a polynomial expression with and without technology.

Identify removable and non-removable discontinuities,
MA.912.A.5.6 and vertical, horizontal, and oblique asymptotes of a graph of a rational function, find the zeros, and graph the function.

Write the equations of conic sections in standard form and
MA.912.A.9.1 general form, in order to identify the conic section and to find its geometric properties (foci, asymptotes, eccentricity, etc.).

MA.912.A.9.2
Graph conic sections with and without using graphing technology.

Moderate
Moderate
finction.
Moderate

路

MA.912.C.1.4 | Find limits of rational functions that are undefined at a |
| :--- |
| point. |

MA.912.C.1.5 Find one-sided limits. Low

MA.912.C.1.9 Understand continuity in terms of limits. High

MA.912.C.1.10 Decide if a function is continuous at a point.
High

MA.912.C.1.11 Find the types of discontinuities of a function. Moderate

MA.912.D.9.1

MA.912.C.1.12 Understand and use the Intermediate Value Theorem on a function over a closed interval.

Understand and apply the Extreme Value Theorem: If $f(x)$
MA.912.C.1.13 is continuous over a closed interval, then f has a maximum Moderate and a minimum on the interval.

Use mathematical induction to prove various concepts in number theory (such as sums of infinite integer series, divisibility statements, and parity statements), recurrence relations, and other applications.

Demonstrate an understanding of the geometric interpretation of vectors and vector operations including addition, scalar multiplication, dot product, and cross product in the plane and in three-dimensional space.

Demonstrate an understanding of the algebraic
MA.912.D.9.2 interpretation of vectors and vector operations including addition, scalar multiplication, dot product, and cross product in the plane and in three-dimensional space.

MA.912.D.9.3 Use vectors to model and solve application problems.
High
Moderate

Moderate

Moderate

High

Moderate parametrically, indicating the direction of motion.

Convert from a parametric representation of a plane curve to a rectangular equation and vice-versa.

MA.912.D.10.3 Use parametric equations to model applications of motion Moderate

Find partial sums of arithmetic and geometric series, and
MA.912.D.11.4 find sums of infinite convergent geometric series. Use Moderate Sigma notation where applicable.

MA.912.T.1.1 Convert between degree and radian measures. Moderate

MA.912.T.1.2 Define and determine sine and cosine using the unit circle. Moderate

State and use exact values of trigonometric functions for
MA.912.T.1.3 $\begin{aligned} & \text { special angles: multiples of } \frac{\pi}{6} \text { and } \frac{\pi}{4} \text { (degree and radian } \text { Low } \text { measures). }\end{aligned}$

MA.912.T.1.4 Find approximate values of trigonometric and inverse trigonometric functions using appropriate technology.

Low

MA.912.T.1.5
Make connections between right triangle ratios, trigonometric functions, and circular functions.

Moderate

Define and graph trigonometric functions using domain,
MA.912.T.1.6 range, intercepts, period, amplitude, phase shift, vertical shift, and asymptotes with and without the use of graphing technology.

MA.912.T.1.7
Define and graph inverse trigonometric relations and functions.

High

Moderate

Solve real-world problems involving applications of
MA.912.T.1.8 trigonometric functions using graphing technology when High appropriate.

Define and use the trigonometric ratios (sine, cosine,
MA.912.T.2.1 tangent, cotangent, secant, cosecant) in terms of angles of Moderate right triangles.

MA.912.T.2.2
Solve real-world problems involving right triangles using technology when appropriate.
MA.912.T.2.3 Apply the laws of sines and cosines to solve real-world problems using technology.
High
MA.912.T.2.4 Use the area of triangles given two sides and an angle or Moderate three sides to solve real-world problems.
Verify the basic Pythagorean identities, such
MA.912.T.3.1 as $\sin ^{2} x+\cos ^{2} x=1$, and show they are equivalent to the Moderate Pythagorean Theorem.
$\begin{array}{ll}\text { MA.912.T.3.2 } & \begin{array}{l}\text { Use basic trigonometric identities to verify other identities } \\ \text { and simplify expressions. }\end{array}\end{array}$
Use the sum and difference, half-angle and double-angle
MA.912.T.3.3 formulas for sine, cosine, and tangent, when formulas are Moderate provided.
Solve trigonometric equations and real-world problems
$\begin{array}{ll}\text { MA.912.T.3.4 } & \begin{array}{l}\text { involving applications of trigonometric equations using } \\ \text { technology when appropriate. }\end{array} \\ & \begin{array}{l}\text { Define polar coordinates and relate polar coordinates to }\end{array}\end{array}$
MA.912.T.4.1 Cartesian coordinates with and without the use of Moderate technology.
MA.912.T.4.2 Represent equations given in rectangular coordinates in terms of polar coordinates.
High
都

COURSE DESCRIPTION GRADES 9-12

Course Number:	1202352
Course Title:	AICE Mathematics 1
Course Length:	Year
Course Status:	State Board Approved
AICE? Advanced International Certification of Education	Yes
General Notes:	The course description for this AICE course is provided at this link: http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=755

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1202354
Course Title:	AICE Mathematics \& Mechanics 1
Course Length:	Year
Course Status:	State Board Approved
AICE? Advanced International Certification of Education	Yes
General Notes:	The course description for this AICE course is provided at this link: http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=755

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1202356
Course Title:	AICE Mathematics \& Mechanics 2
Course Length:	Year
Course Status:	State Board Approved
AICE? Advanced	
International Certification of Education	Yes
General Notes:	The course description for this AICE course is provided at this link: http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=755

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1202362
Course Title:	AICE Mathematics\&Probability \& Statistic 1
Course Length:	Year
Course Status:	State Board Approved
AICE? Advanced International Certification of Education	Yes
General Notes:	The course description for this AICE course is provided at this link: http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=755

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1202364
Course Title:	AICE Mathematics\&Probability \& Statistic 2
Course Length:	Year
Course Status:	State Board Approved
AICE? Advanced	
International Certification of Education	Yes
General Notes:	The course description for this AICE course is provided at this link: http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=755

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1202366
Course Title:	AICE Mathematics\&Mechanics \& Probability\&Statistics 2
Course Length:	Year
Course Status:	State Board Approved
AICE? Advanced	
International Certification of Education	Yes
General Notes:	The course description for this AICE course is provided at this link: http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=755

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	
Number:	1202370
Course Title:	AICE Further Mathematics
Course Length: Year Course Status: State Board Approved AICE? Advanced International Yes Certification of Education General The course description for this AICE course is provided at this link: Notes: http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=756	

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1202371
Course Title:	Pre-AICE Additional Mathematics 3
Course Length:	Year
Course Status:	State Board Approved
AICE?	
Advanced International Certification of Education	Yes

Florida Department of Education COURSE DESCRIPTION GRADES 9-12

Course Number:	1202375
Course Title:	International Baccalaureate Pre-Calculus
Course Length:	Year
Course Status:	State Board Approved
IB?	
International Baccalaureate	Yes

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1202800
Course Title:	Calculus-International Baccalaureate
Course Length:	Year
Course Status:	State Board Approved
IB?	
International Baccalaureate	Yes

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1202810
Course Title:	International Baccalaureate Calculus and Descriptive
Course Length:	Year
Course Status:	State Board Approved
IB?	Yes
International Baccalaureate	

Florida Department of Education

 COURSE DESCRIPTION GRADES 9-12

 COURSE DESCRIPTION GRADES 9-12}

Course Number:	1202820
Course Title:	International Baccalaureate Further Mathematics
Course Length:	Year
Course Status:	State Board Approved
IB?	
International Baccalaureate	Yes

Florida Department of Education

 COURSE DESCRIPTION GRADES 9-12

 COURSE DESCRIPTION GRADES 9-12}

Course Number:	1202830
Course Title:	International Baccalaureate Advanced Calculus
Course Length:	Year
Course Status:	State Board Approved
IB?	
International Baccalaureate	Yes

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1205370
Number:	
Course Title:	Consumer Mathematics
Course	Year
Length:	
Course Status:	State Board Approved

RELATED BENCHMARKS (23) :

Scheme Descriptor

Cognitive Complexity

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

LA.910.1.6.1
The student will use new vocabulary that is introduced and taught directly;

MA.6.A.1.3 Solve real-world problems involving multiplication and division of fractions and decimals.

MA.6.A.3.1 Write and evaluate mathematical expressions that correspond to given situations.

MA.6.A.3.4 Solve problems given a formula.
High

Moderate

Moderate

MA.6.A.5.1 Use equivalent forms of fractions, decimals, and percents to solve problems.

Moderate

Estimate the results of computations with fractions,
MA.6.A.5.3 decimals, and percents, and judge the reasonableness of Moderate the results.

Determine the measures of central tendency (mean,
MA.6.S.6.1 median, mode) and variability (range) for a given set of Low data.

Solve percent problems, including problems involving
MA.7.A.1.2 discounts, simple interest, taxes, tips, and percents of High increase or decrease.

Compare, contrast, and convert units of measure between
MA.7.G.4.4 different measurement systems (US customary or metric (SI)), dimensions, and derived units to solve problems.

Perform operations on real numbers (including integer
MA.8.A.6.4 exponents, radicals, percents, scientific notation, absolute value, rational numbers, and irrational numbers) using multi-step and real world problems.

MA.912.F.1.1
Explain the difference between simple and compound interest.

MA.912.F.1.2 Solve problems involving compound interest.
High

MA.912.F.2.1 Calculate the future value of a given amount of money with and without technology.

MA.912.F.3.1 Compare the advantages and disadvantages of using cash versus a credit card.

Moderate

Calculate the finance charges and total amount due on a credit card bill. fixed rate loan.

Calculate the total amount paid for the life of a loan for a
MA.912.F.3.13 house including the down payment, points, fees, and
Moderate interest.

MA.912.F.3.17
Compare interest rate calculations and annual percentage rate calculations to distinguish between the two rates.

MA.912.F.4.1
Develop personal budgets that fit within various income brackets.

MA.912.F.4.2 $\begin{aligned} & \text { Explain cash management strategies including debit } \\ & \text { accounts, checking accounts, and savings accounts. }\end{aligned}$ Moderate

Use a variety of problem-solving strategies, such as drawing a diagram, guess-and-check, solving a simpler problem, examining simpler problems, and working

High backwards, using technology when appropriate.

MA.912.T.5.2 $\begin{aligned} & \text { Decide whether a solution is reasonable in the context of } \\ & \text { the original situation. }\end{aligned}$ Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1205400
Number:	
Course Title:	Applied Mathematics 1
Course	Year
Length:	
Course Status:	State Board Approved

RELATED BENCHMARKS (29) :

Scheme Descriptor
Cognitive Complexity
The student will use new vocabulary that is introduced and taught directly;

LA.910.1.6.2 The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

Describe the concept of a function, use function notation,
MA.912.A.2.3 determine whether a given relation is a function, and link Moderate equations to functions.

MA.912.A.2.4 Determine the domain and range of a relation. Moderate

MA.912.A.2.13 Solve real-world problems involving relations and functions.

Solve linear equations in one variable that include simplifying algebraic expressions.

High

Moderate

Moderate
commutative properties of real numbers and the properties of equality.

MA.912.A.3.3 Solve literal equations for a specified variable. Moderate

MA.912.A.3.4
Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

Symbolically represent and solve multi-step and real-
MA.912.A.3.5 world applications that involve linear equations and Moderate inequalities.

MA.912.A.3.7 Rewrite equations of a line into slope-intercept form and standard form.

Graph a line given any of the following information: a
MA.912.A.3.8 table of values, the x - and y-intercepts, two points, the slope and a point, the equation of the line in slopeintercept form, standard form, or point-slope form .

MA.912.A.3. 9
Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.

Write an equation of a line given any of the following information: two points on the line, its slope and one point
MA.912.A.3.10 on the line, or its graph. Also, find an equation of a new line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Write an equation of a line that models a data set, and use
MA.912.A.3.11 the equation or the graph to make predictions. Describe the slope of the line in terms of the data, recognizing that the Moderate slope is the rate of change.

Graph a linear equation or inequality in two variables with
MA.912.A.3.12 and without graphing technology. Write an equation or inequality represented by a given graph.

Use a variety of problem-solving strategies, such as
MA.912.A.10.1 drawing a diagram, making a chart, guessing- andchecking, solving a simpler problem, writing an equation, High working backwards, and creating a table.

MA.912.A.10.2 Decide whether a solution is reasonable in the context of the original situation.

Decide whether a given statement is always, sometimes, or
MA.912.A.10.3
never true (statements involving linear or quadratic
expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

MA.912.D.7.1
Perform set operations such as union and intersection, complement, and cross product.

MA.912.D.7.2 Use Venn diagrams to explore relationships and patterns and to make arguments about relationships between sets.

High

Low

Moderate

Find the lengths and midpoints of line segments in twodimensional coordinate systems.

Moderate
MA.912.G.1.1

MA.912.G.1.4
Use coordinate geometry to find slopes, parallel lines, perpendicular lines, and equations of lines.

MA.912.G.2.3
Use properties of congruent and similar polygons to solve mathematical or real-world problems.

Apply transformations (translations, reflections, rotations, dilations, and scale factors) to polygons. to determine congruence, similarity, and symmetry. Know that images formed by translations, reflections, and rotations are congruent to the original shape. Create and verify tessellations of the plane using polygons.

Describe, classify, and compare relationships among
MA.912.G.3.1 quadrilaterals including the square, rectangle, rhombus, Moderate parallelogram, trapezoid, and kite.

MA.912.G.4.4
Use properties of congruent and similar triangles to solve problems involving lengths and areas.

硅

Moderate

High

High

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1205410
Number:	
Course Title:	Applied Mathematics 2
Course	Year
Length:	
Course Status:	State Board Approved

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A. 10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
Assessment: The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (33) :

Scheme Descriptor
Cognitive
Complexity
LA.910.1.6.1
The student will use new vocabulary that is introduced and taught directly;

LA.910.1.6.2
The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

The student will prewrite by using organizational
LA.910.3.1.3 strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

MA.912.A.1.8 $\begin{aligned} & \text { Use the zero product property of real numbers in a variety } \\ & \text { of contexts to identify solutions to equations. }\end{aligned}$
MA.912.A.3.13 $\begin{aligned} & \text { Use a graph to approximate the solution of a system of } \\ & \text { linearions or inequalities in two variables with and }\end{aligned}$ without technology.

Solve systems of linear equations and inequalities in two
MA.912.A.3.14 and three variables using graphical, substitution, and Moderate elimination methods.

MA.912.A.3.15 Solve real-world problems involving systems of linear equations and inequalities in two and three variables.

Moderate

MA.912.A.3.15
Moderate

$$
\begin{array}{ll}
\text { MA.912.A.4.1 } & \begin{array}{l}
\text { Simplify monomials and monomial expressions using the } \\
\text { laws of integral exponents. }
\end{array}
\end{array}
$$

MA.912.A.4.2 Add, subtract, and multiply polynomials. Low
MA.912.A.4.3 Factor polynomial expressions. Moderate
$\begin{array}{ll}\text { MA.912.A.4.4 } & \begin{array}{l}\text { Divide polynomials by monomials and polynomials with } \\ \text { various techniques, including synthetic division. }\end{array}\end{array}$
MA.912.A.5.1 Simplify algebraic ratios. Moderate

MA.912.A.5.4 Solve algebraic proportions. Low
MA.912.A.6.1 Simplify radical expressions Moderate

MA.912.A.6.2
Add, subtract, multiply, and divide radical expressions (square roots and higher).

MA.912.A.7.1 $\begin{aligned} & \text { Graph quadratic equations with and without graphing } \\ & \text { technology. }\end{aligned}$
Moderate

Moderate

Moderate

MA.912.A.7.2
Solve quadratic equations over the real numbers by factoring and by using the quadratic formula.

MA.912.A.7.8 Use quadratic equations to solve real-world problems.
Moderate

MA.912.A.7.10
Use graphing technology to find approximate solutions of quadratic equations.

Use a variety of problem-solving strategies, such as
MA.912.A.10.1 drawing a diagram, making a chart, guessing- andchecking, solving a simpler problem, writing an equation, working backwards, and creating a table.

MA.912.A.10.2 Decide whether a solution is reasonable in the context of the original situation.

Moderate

Decide whether a given statement is always, sometimes,
MA.912.A.10.3 $\begin{aligned} & \text { or never true (statements involving linear or quadratic } \\ & \text { expressions, equations, or inequalities, rational or radical }\end{aligned}$ High
expressions, or logarithmic or exponential functions).

Explain the derivation and apply formulas for perimeter
MA.912.G.2.5 and area of polygons (triangles, quadrilaterals, pentagons, Moderate etc.).

MA.912.G.5.3
Use special right triangles $\left(30^{\circ}-60^{\circ}-90^{\circ}\right.$ and $45^{\circ}-45^{\circ}-$ 90°) to solve problems.

MA.912.G.5.4 Solve real-world problems involving right triangles. High
MA.912.G.6.5 $\begin{aligned} & \text { Solve real-world problems using measures of } \\ & \text { circumference, arc length, and areas of circles and sectors. }\end{aligned}$

MA.912.G.7.5
Explain and use formulas for lateral area, surface area, and volume of solids.

High

Moderate

MA.912.G.7.7 $\begin{aligned} & \text { Determine how changes in dimensions affect the surface } \\ & \text { area and volume of common geometric solids. }\end{aligned}$
Moderate

MA.912.S.2.1 Compare the difference between surveys, experiments,

Moderate
High
and observational studies and what types of questions can and cannot be answered by a particular design.

Apply the definition of random sample and basic types of
MA.912.S.2.2 sampling, including representative samples, stratified Moderate samples, censuses.

MA.912.S.2.3 Identify sources of bias, including sampling and nonsampling errors.

Moderate

Identify outliers in a set of data based on an appropriate
MA.912.S.3.9 graphical presentation of the data, and describe the effect Moderate of outliers on the mean, median, and range of the data.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	
Number:	1205420
Course Title:	Applied Mathematics 3
Course	Year
Length: Course	
Status:	State Board Approved

ASSESSMENT
The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
Assessment: The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1205500
Number:	
Course Title:	Explorations in Mathematics 1
Course	Year
Length:	
Course	State Board Approved
Status:	

RELATED BENCHMARKS (20) :

Scheme
LA.1112.3.1.3

Descriptor

Cognitive
Complexity

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

LA.910.1.6.1
The student will use new vocabulary that is introduced and taught directly;

Identify and describe the results of translations, reflections,
MA.4.G.5.2 and rotations of 45, 90, 180, 270, and 360 degrees,
Moderate including figures with line and rotational symmetry.

MA.6.A.1.1
Explain and justify procedures for multiplying and dividing fractions and decimals.

Moderate

MA.6.A.1.2 Multiply and divide fractions and decimals efficiently.
Low

MA.6.A.1.3 Solve real-world problems involving multiplication and division of fractions and decimals.

High

MA.6.A.2.1 Use reasoning about multiplication and division to solve ratio and rate problems.

High

MA.6.A.2.2 Interpret and compare ratios and rates.
Moderate

MA.6.A.3.3 Work backward with two-step function rules to undo expressions.

MA.6.A.3.4 Solve problems given a formula.
Moderate

Construct and analyze tables, graphs, and equations to
MA.6.A.3.6 describe linear functions and other simple relations using High both common language and algebraic notation.

Determine the measures of central tendency (mean,
MA.6.S.6.1 median, mode) and variability (range) for a given set of data.

Solve percent problems, including problems involving
MA.7.A.1.2 discounts, simple interest, taxes, tips, and percents of High increase or decrease.

Add, subtract, multiply, and divide integers, fractions, and
MA.7.A.3.2 terminating decimals, and perform exponential operations with rational bases and whole number exponents including solving problems in everyday contexts.

MA.7.A.5.1 Express rational numbers as terminating or repeating decimals.

Moderate

MA.7.G.4.3
Identify and plot ordered pairs in all four quadrants of the coordinate plane.

Identify and describe convex, concave, regular, and irregular polygons.

Classify, construct, and describe triangles that are right,
MA.912.G.4.1 acute, obtuse, scalene, isosceles, equilateral, and equiangular.

Use a variety of problem-solving strategies, such as
MA.912.T.5. 1 drawing a diagram, guess-and-check, solving a simpler problem, examining simpler problems, and working backwards, using technology when appropriate.

[^0]
Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1205510
Course Title:	Explorations in Mathematics 2
Course Length:	Year
Course Status:	State Board Approved

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1205540
Number:	
Course Title:	Business Mathematics
Course Length:	Year
Course Status:	State Board Approved

RELATED BENCHMARKS (26) :

Scheme Descriptor

Cognitive Complexity

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

LA.910.1.6.1
The student will use new vocabulary that is introduced and taught directly;

MA.6.A.1.3 Solve real-world problems involving multiplication and division of fractions and decimals.

MA.6.A.3.1 Write and evaluate mathematical expressions that correspond to given situations.

MA.6.A.3.4 Solve problems given a formula.

MA.6.A.5.1 Use equivalent forms of fractions, decimals, and percents to solve problems.

High

Moderate

Moderate

Moderate

Estimate the results of computations with fractions,
MA.6.A.5.3 decimals, and percents, and judge the reasonableness of Moderate the results.

Determine the measures of central tendency (mean,
MA.6.S.6.1 median, mode) and variability (range) for a given set of Low data.

Solve percent problems, including problems involving
MA.7.A.1.2 discounts, simple interest, taxes, tips, and percents of increase or decrease.

Determine how changes in dimensions affect the
MA.7.G.4.1 perimeter, area, and volume of common geometric High figures, and apply these relationships to solve problems.

Compare, contrast, and convert units of measure between
MA.7.G.4.4 different measurement systems (US customary or metric High (SI)), dimensions, and derived units to solve problems.

MA.8.A.6.1 Use exponents and scientific notation to write large and small numbers and vice versa and to solve problems.

Perform operations on real numbers (including integer
MA.8.A.6.4 exponents, radicals, percents, scientific notation, absolute value, rational numbers, and irrational numbers) using multi-step and real world problems.

Select, organize and construct appropriate data displays, including box and whisker plots, scatter plots, and lines of Moderate
MA.8.S.3.1 \quad including box and whisker pest fit to convey information and make conjectures about possible relationships.

MA.912.F.1.1 Explain the difference between simple and compound interest.

MA.912.F.1.2 Solve problems involving compound interest.
Moderate
High
Low

Moderate

High

MA.912.F.2.1 Calculate the future value of a given amount of money

MA.912.F.3.1
with and without technology.

Calculate the present value of a certain amount of money
MA.912.F.2.2 for a given length of time in the future with and without Moderate technology.

Compare the advantages and disadvantages of using cash versus a credit card.

Moderate

Moderate

High

> MA.912.F.3.3 Calculate the finance charges and total amount due on a credit card bill.

> Calculate total cost of purchasing consumer durables over
> MA.912.F.3.6 time given different down payments, financing options, Moderate and fees.

> MA.912.F.4.2 $\begin{aligned} & \text { Explain cash management strategies including debit } \\ & \text { accounts, checking accounts, and savings accounts. }\end{aligned}$ Moderate

> Develop and apply a variety of strategies to use tax tables,
> MA.912.F.4.5 and to determine, calculate, and complete yearly federal Moderate income tax.

> MA.912.F.4.11 Purchase stock with a set amount of money, and follow the process through gains, losses, and selling.

> Moderate

> MA.912.F.4.13 Given current exchange rates be able to convert from one form of currency to another.

> Demonstrate how price and quantity demanded relate,
> MA.912.F.5.1 how price and quantity supplied relate, and how price changes or price controls affect distribution and allocation in the economy.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1206300
Number:	
Course Title:	Informal Geometry
Course Length:	Year
Course Status:	State Board Approved

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
Assessment: The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (37) :

Scheme Descriptor
Cognitive
Complexity
LA.1112.1.6.1 The student will use new vocabulary that is introduced and taught directly;

LA.1112.1.6.2 The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.1112.1.6.5 The student will relate new vocabulary to familiar words;

LA.910.1.6.1 The student will use new vocabulary that is introduced and taught directly;

LA. 910.1 .6.2
The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

MA.912.D.6.2
Find the converse, inverse, and contrapositive of a statement

Moderate

Find the lengths and midpoints of line segments in twodimensional coordinate systems.
MA.912.G.1.1

Identify and use the relationships between special pairs of angles formed by parallel lines and transversals.

Identify and describe convex, concave, regular, and irregular polygons.

Moderate

Moderate

High

Determine the measures of interior and exterior angles of polygons, justifying the method used.

MA.912.G.2.3
Use properties of congruent and similar polygons to solve mathematical or real-world problems.

High

Explain the derivation and apply formulas for perimeter
MA.912.G.2.5 and area of polygons (triangles, quadrilaterals, pentagons, Moderate etc.).

Describe, classify, and compare relationships among
MA.912.G.3.1 quadrilaterals including the square, rectangle, rhombus, Moderate parallelogram, trapezoid, and kite.

MA.912.G.3.2 Compare and contrast special quadrilaterals on the basis of Moderate
their properties.

Classify, construct, and describe triangles that are right,
MA.912.G.4.1 acute, obtuse, scalene, isosceles, equilateral, and
Moderate equiangular.

Define, identify, and construct altitudes, medians, angle
MA.912.G.4.2 bisectors, perpendicular bisectors,orthocenter, centroid, Moderate incenter, and circumcenter.

MA.912.G.4.3 Construct triangles congruent to given triangles.
High

MA.912.G.4.4 Use properties of congruent and similar triangles to solve problems involving lengths and areas.

Moderate

Apply theorems involving segments divided
MA.912.G.4.5 $\begin{aligned} & \text { Apply theorem } \\ & \text { proportionally. }\end{aligned}$

MA.912.G.4.6 Prove that triangles are congruent or similar and use the concept of corresponding parts of congruent triangles.

Moderate

High

MA.912.G.4.7 $\begin{aligned} & \text { Apply the inequality theorems: triangle inequality, } \\ & \text { inequality in one triangle, and the Hinge Theorem. }\end{aligned}$
MA.912.G.4.7 $\begin{aligned} & \text { Apply the inequality theorems: triangle inequality, } \\ & \text { inequality in one triangle, and the Hinge Theorem. }\end{aligned}$
Moderate

Prove and apply the Pythagorean Theorem and its converse.

High
MA.912.G.5.1

MA.912.G.5.3 Use special right triangles $\left(30^{\circ}-60^{\circ}-90^{\circ}\right.$ and $45^{\circ}-45^{\circ}-$ 90°) to solve problems.

MA.912.G.5.4 Solve real-world problems involving right triangles.
High

MA.912.G.6.2 Define and identify: circumference, radius, diameter, arc, arc length, chord, secant, tangent and concentric circles.

Determine and use measures of arcs and related angles
MA.912.G.6.4 (central, inscribed, and intersections of secants and
Moderate tangents).

MA.912.G.6.5 Solve real-world problems using measures of circumference, arc length, and areas of circles and sectors.

Low

Describe and make regular, non-regular, and oblique
MA.912.G.7.1 polyhedra, and sketch the net for a given polyhedron and Moderate vice versa.

MA.912.G.7.2	Describe the relationships between the faces, edges, and vertices of polyhedra.	Moderate
MA.912.G.7.4	Identify chords, tangents, radii, and great circles of spheres	Low

MA.912.G.7.5 $\begin{aligned} & \text { Explain and use formulas for lateral area, surface area, and Moderate } \\ & \text { volume of solids. }\end{aligned}$

MA.912.G.7.7 Determine how changes in dimensions affect the surface area and volume of common geometric solids.

Moderate

Analyze the structure of Euclidean geometry as an
MA.912.G.8.1 axiomatic system. Distinguish between undefined terms, High definitions, postulates, and theorems.

Use a variety of problem-solving strategies, such as
MA.912.G.8.2 $\begin{aligned} & \text { drawing a diagram, making a chart, guess-and-check, } \\ & \text { solving a simpler problem, writing an equation, and }\end{aligned} \quad$ Moderate working backwards.

MA.912.G.8.3 Determine whether a solution is reasonable in the context of the original situation.

Moderate

Make conjectures with justifications about geometric
MA.912.G.8.4 ideas. Distinguish between information that supports a
High conjecture and the proof of a conjecture.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1206310
Number:	
Course Title:	Geometry
Course Length:	Year
Course Status:	State Board Approved

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
Assessment: The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (51) :

Scheme Descriptor

Cognitive
Complexity

LA.1112.1.6.1 The student will use new vocabulary that is introduced and taught directly;

LA.1112.1.6.2 The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.1112.1.6.5 The student will relate new vocabulary to familiar words;

LA.910.1.6.1 The student will use new vocabulary that is introduced and taught directly;

LA.910.1.6.2
The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

MA.912.D.6.2 Find the converse, inverse, and contrapositive of a statement

Moderate

Determine whether two propositions are logically equivalent.

Moderate
MA.912.D.6.3

MA.912.D.6.4 Use methods of direct and indirect proof and determine whether a short proof is logically valid.

Find the lengths and midpoints of line segments in twodimensional coordinate systems.

Construct congruent segments and angles, angle bisectors,
MA.912.G.1.2 and parallel and perpendicular lines using a straight edge and compass or a drawing program, explaining and justifying the process used.

MA.912.G.1.3
Identify and use the relationships between special pairs of angles formed by parallel lines and transversals.

Identify and describe convex, concave, regular, and irregular polygons.

Determine the measures of interior and exterior angles of polygons, justifying the method used.

Moderate
MA.912.G.2.2
High
MA.912.G.2.1

Use properties of congruent and similar polygons to solve mathematical or real-world problems.

High

Apply transformations (translations, reflections, rotations, dilations, and scale factors) to polygons. to determine
MA.912.G.2.4 congruence, similarity, and symmetry. Know that images High
congruent to the original shape. Create and verify tessellations of the plane using polygons.

MA.912.G.2.5 Explain the derivation and apply formulas for perimeter and area of polygons (triangles, quadrilaterals, pentagons, etc.).

MA.912.G.2.7 Determine how changes in dimensions affect the perimeter and area of common geometric figures.

Moderate

Describe, classify, and compare relationships among
MA.912.G.3.1 quadrilaterals including the square, rectangle, rhombus, Moderate parallelogram, trapezoid, and kite.

MA.912.G.3.2 Compare and contrast special quadrilaterals on the basis of their properties.

Moderate

MA.912.G.3. 2
Moderate

MA.912.G.3.3 Use coordinate geometry to prove properties of congruent, regular, and similar quadrilaterals.

MA.912.G.3.4 Prove theorems involving quadrilaterals.
High

High

Classify, construct, and describe triangles that are right,
MA.912.G.4.1 acute, obtuse, scalene, isosceles, equilateral, and
Moderate equiangular.

Define, identify, and construct altitudes, medians, angle
MA.912.G.4.2 bisectors, perpendicular bisectors,orthocenter, centroid,
Moderate incenter, and circumcenter.

MA.912.G.4.3 Construct triangles congruent to given triangles.
High

MA.912.G.4.4 Use properties of congruent and similar triangles to solve problems involving lengths and areas.

Moderate

MA.912.G.4.5 Apply theorems involving segments divided proportionally. Moderate

MA.912.G.4.6
Prove that triangles are congruent or similar and use the concept of corresponding parts of congruent triangles.

High

MA.912.G.4.7 Apply the inequality theorems: triangle inequality, inequality in one triangle, and the Hinge Theorem.

MA.912.G.5.1 Prove and apply the Pythagorean Theorem and its converse. High

MA.912.G.5.2 $\begin{aligned} & \text { State and apply the relationships that exist when the altitude Moderate } \\ & \text { is drawn to the hypotenuse of a right triangle. }\end{aligned}$

MA.912.G.5.3 Use special right triangles $\left(30^{\circ}-60^{\circ}-90^{\circ}\right.$ and $45^{\circ}-45^{\circ}-$ 90°) to solve problems.

MA.912.G.5.4 Solve real-world problems involving right triangles. High

MA.912.G.6.2 Define and identify: circumference, radius, diameter, arc, arc length, chord, secant, tangent and concentric circles.

Determine and use measures of arcs and related angles
MA.912.G.6.4 (central, inscribed, and intersections of secants and
Moderate tangents).

MA.912.G.6.5 Solve real-world problems using measures of circumference, arc length, and areas of circles and sectors.

Given the center and the radius, find the equation of a circle
MA.912.G.6.6 in the coordinate plane or given the equation of a circle in center-radius form, state the center and the radius of the circle.

Given the equation of a circle in center-radius form or given
MA.912.G.6.7 the center and the radius of a circle, sketch the graph of the Moderate circle.

Describe and make regular, non-regular, and oblique
MA.912.G.7.1 polyhedra, and sketch the net for a given polyhedron an vice versa.

MA.912.G.7.2 Describe the relationships between the faces, edges, and vertices of polyhedra.

Moderate

MA.912.G.7.2
Moderate

MA.912.G.7.4 Identify chords, tangents, radii, and great circles of spheres
Low

MA.912.G.7.5 $\begin{aligned} & \text { Explain and use formulas for lateral area, surface area, and } \\ & \text { volume of solids. }\end{aligned}$
Moderate

MA.912.G.7.6 Identify and use properties of congruent and similar solids. Moderate

MA.912.G.7.7 $\begin{aligned} & \text { Determine how changes in dimensions affect the surface Moderate } \\ & \text { area and volume of common geometric solids. }\end{aligned}$.

Analyze the structure of Euclidean geometry as an
MA.912.G.8.1 axiomatic system. Distinguish between undefined terms, definitions, postulates, and theorems.

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guess-and-check, solving a
MA.912.G.8.2 simpler problem, writing an equation, and working backwards.

Moderate

MA.912.G.8.3 Determine whether a solution is reasonable in the context of the original situation.

Moderate

Make conjectures with justifications about geometric ideas.
MA.912.G.8.4 Distinguish between information that supports a conjecture High and the proof of a conjecture.

Write geometric proofs, including proofs by contradiction
MA.912.G.8.5 and proofs involving coordinate geometry. Use and compare a variety of ways to present deductive proofs, such High as flow charts, paragraphs, two-column, and indirect proofs.

Perform basic constructions using straightedge and
MA.912.G.8.6 $\begin{aligned} & \text { compass, and/or drawing programs describing and } \\ & \text { justifying the procedures used. Distinguish between }\end{aligned}$ High sketching, constructing, and drawing geometric figures.

Define and use the trigonometric ratios (sine, cosine,
MA.912.T.2.1 tangent, cotangent, secant, cosecant) in terms of angles of Moderate right triangles.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1206320
Course Title:	Geometry Honors
Course Length:	Year
Course Status:	State Board Approved
Honors?	Yes

ASSESSMEN	
	The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I. The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
Assessment:	The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II. The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (59) :
Scheme Descriptor

Cognitive

Complexity

The student will use new vocabulary that is introduced and taught directly;

LA.1112.1.6.2 The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.1112.1.6.5 The student will relate new vocabulary to familiar words;

The student will use new vocabulary that is introduced and taught directly;

LA.910.1.6.2 The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

MA.912.D.6.1 Use truth tables to determine truth values of propositional statements.

Moderate

Find the converse, inverse, and contrapositive of a statement

Moderate

Determine whether two propositions are logically equivalent.

Moderate
MA.912.D.6.3
Moderate

Use methods of direct and indirect proof and determine whether a short proof is logically valid.

Moderate
MA.912.D.6.4

MA.912.D.9.3 Use vectors to model and solve application problems.
High

MA.912.D.11.5
Explore and use other sequences found in nature such as the Fibonacci sequence and the golden ratio.

High

Find the lengths and midpoints of line segments in twodimensional coordinate systems.

Construct congruent segments and angles, angle bisectors,
MA.912.G.1.2 and parallel and perpendicular lines using a straight edge and compass or a drawing program, explaining and justifying the process used.

MA.912.G.1.3
Identify and use the relationships between special pairs of angles formed by parallel lines and transversals.

Moderate

Identify and describe convex, concave, regular, and irregular polygons.

MA.912.G.2.2 Determine the measures of interior and exterior angles of polygons, justifying the method used.

Moderate

High
Use properties of congruent and simila
mathematical or real-world problems.

Apply transformations (translations, reflections, rotations, dilations, and scale factors) to polygons. to determine congruence, similarity, and symmetry. Know that images formed by translations, reflections, and rotations are congruent to the original shape. Create and verify tessellations of the plane using polygons.

Explain the derivation and apply formulas for perimeter
MA.912.G.2.5 and area of polygons (triangles, quadrilaterals, pentagons, Moderate etc.).

Use coordinate geometry to prove properties of congruent,
MA.912.G.2.6 regular and similar polygons, and to perform transformations in the plane.

Determine how changes in dimensions affect the perimeter and area of common geometric figures.

Describe, classify, and compare relationships among
MA.912.G.3.1 quadrilaterals including the square, rectangle, rhombus, Moderate parallelogram, trapezoid, and kite.

MA.912.G.3.2
Compare and contrast special quadrilaterals on the basis of their properties.

Use coordinate geometry to prove properties of congruent, regular, and similar quadrilaterals.

MA.912.G.3.4 Prove theorems involving quadrilaterals.

Classify, construct, and describe triangles that are right,
MA.912.G.4.1 acute, obtuse, scalene, isosceles, equilateral, and
Moderate equiangular.

MA.912.G.4.2 Define, identify, and construct altitudes, medians, angle Moderate
bisectors, perpendicular bisectors,orthocenter, centroid, incenter, and circumcenter.

MA.912.G.4.3 Construct triangles congruent to given triangles.
High

MA.912.G.4.4
Use properties of congruent and similar triangles to solve problems involving lengths and areas.

Moderate

Apply theorems involving segments divided proportionally.

Moderate
MA.912.G.4.5

MA.912.G.4.6
Prove that triangles are congruent or similar and use the concept of corresponding parts of congruent triangles.

High

MA.912.G.4. 7
Apply the inequality theorems: triangle inequality, inequality in one triangle, and the Hinge Theorem.

MA.912.G.4.8
Use coordinate geometry to prove properties of congruent, regular, and similar triangles.

Moderate

High

Prove and apply the Pythagorean Theorem and its converse.

High

State and apply the relationships that exist when the altitude is drawn to the hypotenuse of a right triangle.

MA.912.G.5.3
Use special right triangles $\left(30^{\circ}-60^{\circ}-90^{\circ}\right.$ and $45^{\circ}-45^{\circ}-$ 90°) to solve problems.

Moderate

MA.912.G.5.4

Determine the center of a given circle. Given three points
MA.912.G.6.1 not on a line, construct the circle that passes through them. High
Construct tangents to circles. Circumscribe and inscribe circles about and within triangles and regular polygons.

High

MA.912.G.6.2
Define and identify: circumference, radius, diameter, arc, arc length, chord, secant, tangent and concentric circles.

MA.912.G.6.3
Prove theorems related to circles, including related angles, chords, tangents, and secants.

Determine and use measures of arcs and related angles
MA.912.G.6.4 (central, inscribed, and intersections of secants and Moderate tangents).

MA.912.G.6.5
Solve real-world problems using measures of circumference, arc length, and areas of circles and sectors.

Given the center and the radius, find the equation of a
MA.912.G.6.6
circle in the coordinate plane or given the equation of a circle in center-radius form, state the center and the radius Moderate of the circle.

Given the equation of a circle in center-radius form or
MA.912.G.6.7 given the center and the radius of a circle, sketch the graph Moderate of the circle.

Describe and make regular, non-regular, and oblique
MA.912.G.7. 1 polyhedra, and sketch the net for a given polyhedron and Moderate vice versa.

Describe the relationships between the faces, edges, and
vertices of polyhedra.

Moderate

Moderate sections of solid objects.

Identify chords, tangents, radii, and great circles of spheres

Explain and use formulas for lateral area, surface area, and Moderate
volume of solids. volume of solids.

Low

Moderate solids.

Determine how changes in dimensions affect the surface area and volume of common geometric solids.

Moderate

High
axiomatic system. Distinguish between undefined terms, definitions, postulates, and theorems.

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guess-and-check, solving a simpler problem, writing an equation, and Moderate working backwards.

MA.912.G.8.3
Determine whether a solution is reasonable in the context of the original situation.

Make conjectures with justifications about geometric
MA.912.G.8.4 ideas. Distinguish between information that supports a High conjecture and the proof of a conjecture.

Write geometric proofs, including proofs by contradiction and proofs involving coordinate geometry. Use and
MA.912.G.8.5 compare a variety of ways to present deductive proofs, High such as flow charts, paragraphs, two-column, and indirect proofs.

Perform basic constructions using straightedge and
MA.912.G.8.6 compass, and/or drawing programs describing and justifying the procedures used. Distinguish between sketching, constructing, and drawing geometric figures.

Define and use the trigonometric ratios (sine, cosine,
MA.912.T.2.1 tangent, cotangent, secant, cosecant) in terms of angles of Moderate right triangles.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course
Number:
1206330
Course Title: Analytic Geometry
Course
Length:
Semester
Course Status: State Board Approved

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
Assessment: The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (18) :

Scheme Descriptor
The student will use new vocabulary that is introduced and taught directly;

The student will use background knowledge of subject and related content areas, prereading strategies (e.g.,
LA.1112.1.7.1 previewing, discussing, generating questions), text features, and text structure to make and confirm complex predictions of content, purpose, and organization of a reading selection;

LA.1112.1.7.4 The student will identify cause-and-effect relationships in text;

The student will prewrite by making a plan for writing that
LA.1112.3.1.2 addresses purpose, audience, a controlling idea, logical sequence, and time frame for completion; and

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

The student will draft writing by establishing a logical
LA.1112.3.2.2 organizational pattern with supporting details that are substantial, specific, and relevant; and

MA.912.A.4.5
Graph polynomial functions with and without technology and describe end behavior.

Moderate

Describe the relationships among the solutions of an
MA.912.A.4.8 equation, the zeros of a function, the x-intercepts of a graph, and the factors of a polynomial expression with and without technology.

MA.912.A.4.9
Use graphing technology to find approximate solutions for Low polynomial equations.

Identify removable and non-removable discontinuities, and
MA.912.A.5.6 vertical, horizontal, and oblique asymptotes of a graph of a Moderate rational function, find the zeros, and graph the function.

MA.912.A.8.7 Solve applications of exponential growth and decay.
High

Write the equations of conic sections in standard form and
MA.912.A.9.1 general form, in order to identify the conic section and to find its geometric properties (foci, asymptotes, eccentricity, etc.).

MA.912.A.9.2 $\begin{aligned} & \text { Graph conic sections with and without using graphing } \\ & \text { technology. }\end{aligned}$ Moderate

High

MA.912.D.6.4 Use methods of direct and indirect proof and determine whether a short proof is logically valid.

MA.912.D.10.1 $\begin{aligned} & \text { Sketch the graph of a curve in the plane represented } \\ & \text { parametrically, indicating the direction of motion. }\end{aligned}$ Moderate

MA.912.D.10.2 Convert from a parametric representation of a plane curve Low

MA.912.D.10.3 Use parametric equations to model applications of motion MA.912.D.10.3 Use paramet $\begin{aligned} & \text { in the plane. }\end{aligned}$

Moderate

Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1206800
Course Title:	Analytic Geometry-International Baccalaureate
Course Length:	Semester
Course Status:	State Board Approved
IB?	
International	Yes
Baccalaureate	

[^1]
Florida Department of Education

 COURSE DESCRIPTION GRADES 9-12

 COURSE DESCRIPTION GRADES 9-12}

Course
Number:
Course Title: Integrated Mathematics 1
Course
Length:
1207310
Course Status: State Board Approved

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A. 10.3 is limited to linear
Assessment: expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (40) :

Scheme Descriptor

Cognitive
Complexity

LA.1.1.6.1 The student will use new vocabulary that is introduced and taught directly;

LA.1.1.6.2

LA.1.1.6.5

LA.1.3.1.3

The student will listen to, read, and discuss both familiar and conceptually challenging text;

The student will relate new vocabulary to prior knowledge;

The student will prewrite by organizing ideas using simple webs, maps, or lists.

Describe the concept of a function, use function notation,
MA.912.A.2.3 determine whether a given relation is a function, and link Moderate equations to functions.

MA.912.A.2.4 Determine the domain and range of a relation. Moderate

MA.912.A.2.13 Solve real-world problems involving relations and functions. High

Solve linear equations in one variable that include simplifying algebraic expressions.

Moderate
MA.912.A.3.1

Identify and apply the distributive, associative, and
MA.912.A.3.2 commutative properties of real numbers and the properties Moderate of equality.

MA.912.A.3.3 Solve literal equations for a specified variable. Moderate

MA.912.A.3.4
Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

MA.912.A.3.7
Rewrite equations of a line into slope-intercept form and standard form.

Low

Graph a line given any of the following information: a table of values, the x - and y-intercepts, two points, the
MA.912.A.3.8 slope and a point, the equation of the line in slopeintercept form, standard form, or point-slope form .

MA.912.A.3.9
Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.

Moderate Moderate

Write an equation of a line given any of the following information: two points on the line, its slope and one point
MA.912.A.3.10 on the line, or its graph. Also, find an equation of a new Moderate line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Write an equation of a line that models a data set, and use
MA.912.A.3.11 the equation or the graph to make predictions. Describe the High slope of the line in terms of the data, recognizing that the
slope is the rate of change.

Graph a linear equation or inequality in two variables with
MA.912.A.3.12 and without graphing technology. Write an equation or Moderate inequality represented by a given graph.

Use a graph to approximate the solution of a system of
MA.912.A.3.13 linear equations or inequalities in two variables with and Moderate without technology.

Solve systems of linear equations and inequalities in two
MA.912.A.3.14 and three variables using graphical, substitution, and Moderate elimination methods.

MA.912.A.3.15 Solve real-world problems involving systems of linear equations and inequalities in two and three variables.

High

MA.912.A.4.1 Simplify monomials and monomial expressions using the laws of integral exponents.

MA.912.A.4.2 Add, subtract, and multiply polynomials.
Low

MA.912.A.4.3 Factor polynomial expressions.
Moderate

MA.912.A.6.1 Simplify radical expressions Moderate

MA.912.A.6.2 Add, subtract, multiply, and divide radical expressions (square roots and higher).

Use a variety of problem-solving strategies, such as
MA.912.A.10.1 drawing a diagram, making a chart, guessing- andchecking, solving a simpler problem, writing an equation, working backwards, and creating a table.

MA.912.A.10.2 $\begin{aligned} & \text { Decide whether a solution is reasonable in the context of } \\ & \text { the original situation. }\end{aligned}$

Decide whether a given statement is always, sometimes, or
MA.912.A.10.3 never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

MA.912.G.1.1
Find the lengths and midpoints of line segments in twodimensional coordinate systems.

Construct congruent segments and angles, angle bisectors, and parallel and perpendicular lines using a straight edge and compass or a drawing program, explaining and justifying the process used.

Identify and use the relationships between special pairs of angles formed by parallel lines and transversals.

Moderate

Use coordinate geometry to find slopes, parallel lines, perpendicular lines, and equations of lines.

Identify and describe convex, concave, regular, and irregular polygons.

Determine the measures of interior and exterior angles of polygons, justifying the method used.

Classify, construct, and describe triangles that are right,
MA.912.G.4.1 acute, obtuse, scalene, isosceles, equilateral, and

Moderate equiangular.

Define, identify, and construct altitudes, medians, angle
MA.912.G.4.2 bisectors, perpendicular bisectors,orthocenter, centroid, incenter, and circumcenter.

Prove and apply the Pythagorean Theorem and its converse.

Analyze the structure of Euclidean geometry as an
MA.912.G.8.1 axiomatic system. Distinguish between undefined terms, definitions, postulates, and theorems.

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guess-and-check, solving a simpler problem, writing an equation, and working backwards.

Moderate

Moderate

Moderate

High

Moderate
MA.912.G.2.2
Moderate
Moderate

MA.912.G.8.3 $\begin{aligned} & \text { Determine whether a solution is reasonable in the context } \\ & \text { of the original situation. }\end{aligned}$ Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1207320
Number:	
Course Title:	Integrated Mathematics 2
Course	Year
Length:	
Course Status:	State Board Approved

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear
Assessment: expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

RELATED BENCHMARKS (45) :

Cognitive
Complexity

LA.910.1.6.1
The student will use new vocabulary that is introduced and taught directly;

LA.910.1.6.2
The student will listen to, read, and discuss familiar and conceptually challenging text;

LA.910.1.6.5 The student will relate new vocabulary to familiar words;

The student will prewrite by using organizational strategies
LA.910.3.1.3 and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.
MA.912.A.1.8 Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.
Moderate
MA.912.A.3.6 Solve and graph the solutions of absolute value equations and inequalities with one variable. ModerateMA.912.A.5.1 Simplify algebraic ratios.Moderate
MA.912.A.5.2 Add, subtract, multiply, and divide rational expressions. Moderate
MA.912.A.5.3 Simplify complex fractions. Moderate
MA.912.A.5.4 Solve algebraic proportions. Low
MA.912.A.5.5 Solve rational equations. Moderate
MA.912.A.7.1 Graph quadratic equations with and without graphing technology.

MA.912.A.7.6 Identify the axis of symmetry, vertex, domain, range and intercept(s) for a given parabola.

Low

MA.912.A.7.8 Use quadratic equations to solve real-world problems. Moderate

MA.912.A.7.10 Use graphing technology to find approximate solutions of quadratic equations.

Use a variety of problem-solving strategies, such as
MA.912.A.10.1 $\begin{aligned} & \text { drawing a diagram, making a chart, guessing- and- } \\ & \text { checking, solving a simpler problem, writing an equation, }\end{aligned}$ working backwards, and creating a table.

MA.912.A.10.2 $\begin{aligned} & \text { Decide whether a solution is reasonable in the context of Moderate } \\ & \text { the original situation. }\end{aligned}$
MA.912.A.10.3 Decide whether a given statement is always, sometimes, or never true (statements involving linear or quadratic
expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

Apply transformations (translations, reflections, rotations, dilations, and scale factors) to polygons. to determine

MA.912.G.2.4 congruence, similarity, and symmetry. Know that images formed by translations, reflections, and rotations are congruent to the original shape. Create and verify tessellations of the plane using polygons.

Explain the derivation and apply formulas for perimeter
MA.912.G.2.5 and area of polygons (triangles, quadrilaterals, pentagons, Moderate etc.).

MA.912.G.2.7
Determine how changes in dimensions affect the perimeter and area of common geometric figures.

Moderate

Describe, classify, and compare relationships among
MA.912.G.3.1 quadrilaterals including the square, rectangle, rhombus, Moderate parallelogram, trapezoid, and kite.

MA.912.G.3.2 Compare and contrast special quadrilaterals on the basis of Moderate their properties.

Use coordinate geometry to prove properties of congruent, regular, and similar quadrilaterals.

High
MA.912.G.3.3

MA.912.G.3.4 Prove theorems involving quadrilaterals.
High

MA.912.G.4.3 Construct triangles congruent to given triangles.
High

MA.912.G.4.4
Use properties of congruent and similar triangles to solve problems involving lengths and areas.

Moderate

MA.912.G.4.5
Apply theorems involving segments divided proportionally.

MA.912.G.4.6
Prove that triangles are congruent or similar and use the concept of corresponding parts of congruent triangles.

MA.912.G.4.7 Apply the inequality theorems: triangle inequality, inequality in one triangle, and the Hinge Theorem.

Moderate

MA.912.G.5.2
State and apply the relationships that exist when the altitude is drawn to the hypotenuse of a right triangle.

Moderate

MA.912.G.5.3
Use special right triangles $\left(30^{\circ}-60^{\circ}-90^{\circ}\right.$ and $45^{\circ}-45^{\circ}-$ 90°) to solve problems.

Moderate

MA.912.G.5.4 Solve real-world problems involving right triangles.
High

Define and identify: circumference, radius, diameter, arc, arc length, chord, secant, tangent and concentric circles.

Determine and use measures of arcs and related angles
MA.912.G.6.4 (central, inscribed, and intersections of secants and Moderate tangents).

MA.912.G.6.5
Solve real-world problems using measures of circumference, arc length, and areas of circles and sectors.

High

Given the center and the radius, find the equation of a
MA.912.G.6.6
circle in the coordinate plane or given the equation of a circle in center-radius form, state the center and the radius

Moderate of the circle.

Given the equation of a circle in center-radius form or
MA.912.G.6.7 given the center and the radius of a circle, sketch the graph Moderate of the circle.

Use a variety of problem-solving strategies, such as
MA.912.G.8.2 drawing a diagram, making a chart, guess-and-check, solving a simpler problem, writing an equation, and working backwards.

Moderate

MA.912.G.8.3
Determine whether a solution is reasonable in the context of the original situation.

Write geometric proofs, including proofs by contradiction
MA.912.G.8.5 and proofs involving coordinate geometry. Use and

High compare a variety of ways to present deductive proofs,
such as flow charts, paragraphs, two-column, and indirect proofs.

Perform basic constructions using straightedge and
MA.912.G.8.6 compass, and/or drawing programs describing and justifying the procedures used. Distinguish between sketching, constructing, and drawing geometric figures.

MA.912.S.2.3
Identify sources of bias, including sampling and nonsampling errors.

High

Define and use the trigonometric ratios (sine, cosine,
MA.912.T.2.1 tangent, cotangent, secant, cosecant) in terms of angles of Moderate right triangles.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1207330
Number:	
Course Title:	Integrated Mathematics 3
Course	Year
Length:	
Course Status:	State Board Approved

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at:
http://www.achieve.org/node/867.
The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A.2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

RELATED BENCHMARKS (43) :
Scheme
Descriptor
LA.910.1.6.1 The student will use new vocabulary that is introduced and
taught directly;

The student will write in a variety of
LA.910.4.2.1
informational/expository forms, including a variety of technical documents (e.g., how-to-manuals, procedures, assembly directions);

MA.912.A.1.6
Identify the real and imaginary parts of complex numbers and perform basic operations.

Moderate

Graph absolute value equations and inequalities in two variables.

Moderate

Identify and graph common functions (including but not
MA.912.A.2.6 limited to linear, rational, quadratic, cubic, radical, Moderate absolute value).

Perform operations (addition, subtraction, division, and
MA.912.A.2.7 multiplication) of functions algebraically, numerically, and Moderate graphically.

MA.912.A.2.8 Determine the composition of functions.
Low

MA.912.A.2.10 Describe and graph transformations of functions
Moderate

MA.912.A.2.11 Solve problems involving functions and their inverses.
High

Solve systems of linear equations and inequalities in two
MA.912.A.3.14 and three variables using graphical, substitution, and
Moderate elimination methods.

MA.912.A.3.15 Solve real-world problems involving systems of linear equations and inequalities in two and three variables.

High

MA.912.A.4.4
Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

MA.912.A.4.5
Graph polynomial functions with and without technology and describe end behavior.

Moderate

MA.912.A.4.6 Use theorems of polynomial behavior (including but not Moderate
limited to the Fundamental Theorem of Algebra, Remainder Theorem, the Rational Root Theorem, Descartes' Rule of Signs, and the Conjugate Root Theorem) to find the zeros of a polynomial function.

Describe the relationships among the solutions of an
MA.912.A.4.8 equation, the zeros of a function, the x-intercepts of a graph, and the factors of a polynomial expression with and without technology.

MA.912.A.4.9 $\begin{aligned} & \text { Use graphing technology to find approximate solutions for } \\ & \text { polynomial equations. }\end{aligned}$

MA.912.A.4.10 Use polynomial equations to solve real-world problems.
Moderate

MA.912.A.6.4 $\begin{aligned} & \text { Convert between rational exponent and radical forms of Low } \\ & \text { expressions. }\end{aligned}$

MA.912.A.6.5 Solve equations that contain radical expressions.
Moderate

MA.912.A.7.3 $\begin{aligned} & \text { Solve quadratic equations over the real numbers by } \\ & \text { completing the square. }\end{aligned}$ Moderate
$\begin{array}{ll}\text { MA.912.A.7.4 } & \begin{array}{l}\text { Use the discriminant to determine the nature of the roots of } \\ \text { a quadratic equation. }\end{array}\end{array}$

MA.912.A.7.5 $\begin{aligned} & \text { Solve quadratic equations over the complex number }\end{aligned}$ system.

Moderate

MA.912.A.8.1 Define exponential and logarithmic functions and determine their relationship

Moderate

Define and use the properties of logarithms to simplify
MA.912.A.8.2 $\begin{aligned} & \text { logarithmic expressions and to find their approximate Low } \\ & \text { values. }\end{aligned}$ values.

MA.912.A.8.3 Graph exponential and logarithmic functions. Moderate
MA.912.A.8.5 Solve logarithmic and exponential equations.
Moderate

MA.912.A.8.6 Use the change of base formula.
Low

MA.912.A.8.7 Solve applications of exponential growth and decay.
High

Use a variety of problem-solving strategies, such as
MA.912.A.10.1 $\begin{aligned} & \text { drawing a diagram, making a chart, guessing- and- } \\ & \text { checking, solving a simpler problem, writing an equation, }\end{aligned}$ working backwards, and creating a table.

MA.912.A.10.2 Decide whether a solution is reasonable in the context of the original situation.

Decide whether a given statement is always, sometimes, or
MA.912.A.10.3 $\begin{aligned} & \text { never true (statements involving linear or quadratic } \\ & \text { expressions, equations, or inequalities, rational or radical }\end{aligned}$
High expressions, or logarithmic or exponential functions).

MA.912.D.11.1 Define arithmetic and geometric sequences and series. Low

MA.912.D.11.3 Find specified terms of arithmetic and geometric Low $\begin{aligned} & \text { Lequences. } \\ & \text { sequen }\end{aligned}$

Describe and make regular, non-regular, and oblique
MA.912.G.7.1 polyhedra, and sketch the net for a given polyhedron and Moderate
vice versa.
MA.912.G.7.2 Describe the relationships between the faces, edges, and vertices of polyhedra.

Moderate
Moderate

High

MA.912.A.10.2

MA.912.D.11.3
rertices of polyhedras
MA.912.G.7.4 Identify chords, tangents, radii, and great circles of spheres Low
$\begin{array}{ll}\text { MA.912.G.7.5 } & \begin{array}{l}\text { Explain and use formulas for lateral area, surface area, and } \\ \text { volume of solids. }\end{array}\end{array}$

MA.912.G.7.6 Identify and use properties of congruent and similar solids. Moderate

MA.912.G.7.7 $\begin{aligned} & \text { Determine how changes in dimensions affect the surface } \\ & \text { area and volume of common geometric solids. }\end{aligned}$
Moderate area and volume of common geometric solids.

Calculate and interpret measures of the center of a set of
MA.912.S.3.3 data, including mean, median, and weighted mean, and use Moderate these measures to make comparisons among sets of data.

Calculate and interpret measures of variance and standard
MA.912.S.3.4 deviation. Use these measures to make comparisons among Moderate sets of data.

Identify outliers in a set of data based on an appropriate
MA.912.S.3.9 graphical presentation of the data, and describe the effect Moderate of outliers on the mean, median, and range of the data.

Define and use the trigonometric ratios (sine, cosine,
MA.912.T.2.1 tangent, cotangent, secant, cosecant) in terms of angles of Moderate right triangles.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1208300
Number:	
Course Title:	Liberal Arts Mathematics
Course	Year
Length:	

Course Status: State Board Approved

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A.2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

RELATED BENCHMARKS (35) :

Scheme
Descriptor

The student will write in a variety of informational/expository forms, including a variety of technical documents (e.g., how-to-manuals, procedures, assembly directions);

MA.912.A.1.3 Simplify real number expressions using the laws of exponents.

Low

Perform operations on real numbers (including integer
MA.912.A.1.4 exponents, radicals, percents, scientific notation, absolute value, rational numbers, irrational numbers) using multistep and real-world problems.

MA.912.A.1.8 Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

MA.912.A.2.1 Create a graph to represent a real-world situation. Moderate

MA.912.A.2.2 Interpret a graph representing a real-world situation. Moderate Describe the concept of a function, use function notation,
MA.912.A.2.3 determine whether a given relation is a function, and link Moderate equations to functions.

MA.912.A.3.3 Solve literal equations for a specified variable.
Moderate

MA.912.A.3.4
Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

MA.912.A.3.5
Symbolically represent and solve multi-step and real-world applications that involve linear equations and inequalities.

Moderate

MA.912.A.3.7 Rewrite equations of a line into slope-intercept form and standard form.

Low

Graph a line given any of the following information: a
MA. 912 .A.3.8 table of values, the x - and y-intercepts, two points, the slope and a point, the equation of the line in slope-intercept form, standard form, or point-slope form .

MA.912.A.3.9 Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.

Write an equation of a line given any of the following information: two points on the line, its slope and one point
MA.912.A.3.10 on the line, or its graph. Also, find an equation of a new line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Write an equation of a line that models a data set, and use
MA.912.A.3.11 the equation or the graph to make predictions. Describe the slope of the line in terms of the data, recognizing that the High slope is the rate of change.

Use a graph to approximate the solution of a system of
MA.912.A.3.13 linear equations or inequalities in two variables with and Moderate without technology.

MA.912.A.7.2
Solve quadratic equations over the real numbers by factoring and by using the quadratic formula.

MA.912.G.1.1 Find the lengths and midpoints of line segments in twodimensional coordinate systems.

MA.912.G.1.4
Use coordinate geometry to find slopes, parallel lines, perpendicular lines, and equations of lines.

MA.912.G.2.3
Use properties of congruent and similar polygons to solve mathematical or real-world problems.

Explain the derivation and apply formulas for perimeter
MA.912.G.2.5 and area of polygons (triangles, quadrilaterals, pentagons, Moderate etc.).

MA.912.G.2.7 Determine how changes in dimensions affect the perimeter and area of common geometric figures.

Describe, classify, and compare relationships among
MA.912.G.3.1 quadrilaterals including the square, rectangle, rhombus, Moderate parallelogram, trapezoid, and kite.

MA.912.G.4.4
Use properties of congruent and similar triangles to solve problems involving lengths and areas.

Use special right triangles $\left(30^{\circ}-60^{\circ}-90^{\circ}\right.$ and $45^{\circ}-45^{\circ}-$ 90°) to solve problems.

MA.912.G.5.4 Solve real-world problems involving right triangles. High

MA.912.G.7.5

MA.912.G.7.7
Determine how changes in dimensions affect the surface area and volume of common geometric solids.

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guess-and-check, solving a simpler problem, writing an equation, and working backwards.

Determine whether a solution is reasonable in the context of the original situation.

Read and interpret data presented in various formats. Determine whether data is presented in appropriate format, and identify possible corrections. Formats to include:

- bar graphs
- line graphs

MA.912.S.3.1
Explain and use formulas for lateral area, surface area, and volume of solids.

MA.912.G.8.2

MA.912.G.8.3
Moderate

- stem and leaf plots

Moderate

Moderate

Moderate

- circle graphs
- histograms
- box and whiskers plots
- scatter plots
- cumulative frequency (ogive) graphs

Collect, organize, and analyze data sets, determine the best format for the data and present visual summaries from the following:

- bar graphs
- line graphs
- stem and leaf plots
- circle graphs
- histograms
- box and whisker plots
- scatter plots
- cumulative frequency (ogive) graphs

Calculate and interpret measures of the center of a set of
MA.912.S.3.3 data, including mean, median, and weighted mean, and use Moderate these measures to make comparisons among sets of data.

MA.912.S.3.5 Calculate and interpret the range and quartiles of a set of data.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number: 1209800
Course Title: Mathematics Studies-International Baccalaureate
Course Length: Year
Course Status: State Board Approved
IB?
International Yes
Baccalaureate

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A. 2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1209810
Course Title:	Pre-AICE Mathematics 1
Course Length:	Year
Course Status:	State Board Approved
AICE? Advanced International Certification of Education	Yes
General Notes:	The course description for this AICE course is provided at this link: http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=872

ASSESSMENT

The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I. The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

Assessment:
The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	
Number:	1209820
Course Title:	Pre-AICE Mathematics 2
Course Year Length: Course State Board Approved Status: AICE? Advanced International Yes Certification of Education General The course description for this AICE course is provided at this link: Notes: http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=872	

ASSESSMENT

The Benchmarks MA. $912 . A .3 .14$ and MA. 912 .A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II.
The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number: 1209830
Course Title: International Baccalaureate Mathematics Higher Level
Course Length: Year
Course Status: State Board Approved
IB?
International Yes
Baccalaureate

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A. 2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1210300
Number:	
Course Title:	Probability \& Statistics with Applications
Course Length:	Year
Course	
Status:	State Board Approved

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4

Assessment:

- MA.912.A.1.7
- MA.912.A. 2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

RELATED BENCHMARKS (39) :

Scheme
Descriptor

Cognitive Complexity

LA.1112.1.6.1 The student will use new vocabulary that is introduced and taught directly;

LA.1112.1.6.9 $\begin{aligned} & \text { The student will determine the correct meaning of words } \\ & \text { with multiple meanings in context; }\end{aligned}$

The student will write an informational report that integrates information and makes distinctions between the relative value and significance of specific data, facts, and ideas; and

Use counting principles, including the addition and the
MA.912.P.1.1 multiplication principles, to determine size of finite sample
High spaces and probabilities of events in those spaces.

MA.912.P.1.2
Use formulas for permutations and combinations to count outcomes and determine probabilities of events.

Moderate

Determine probabilities of complementary events, and calculate odds for and against the occurrence of events.

Moderate
MA.912.P.2.1

MA.912.P.2. 2 Determine probabilities of independent events.
Moderate

Understand and use the concept of conditional probability, including: understanding how conditioning affects the probability of events and finding conditional probabilities from a two-way frequency table.

Determine probabilities of events from distributions, including:

- discrete uniform (all outcomes in a finite set equally likely)

High

- binomial
- normal
- exponential

Determine the mean and variance of distributions, including:

MA.912.P.3.2 - discrete uniform (all outcomes in a finite set equally Moderate likely)

- binomial
- normal
- exponential

MA.912.P.3.3 Apply the properties of the normal distribution. Moderate

MA.912.P.3.4 Apply the Central Limit Theorem to determine the probability that a sample mean will be in a certain interval.

High

MA.912.S.1.1 Formulate an appropriate research question to be answered by collecting data or performing an experiment.

High

Determine appropriate and consistent standards of
MA.912.S.1.2 measurement for the data to be collected in a survey or Moderate experiment.

Compare the difference between surveys, experiments, and
MA.912.S.2.1 observational studies and what types of questions can and cannot be answered by a particular design.

Apply the definition of random sample and basic types of
MA.912.S.2.2 sampling, including representative samples, stratified samples, censuses.

MA.912.S.2.3
Identify sources of bias, including sampling and nonsampling errors.

Read and interpret data presented in various formats.
Determine whether data is presented in appropriate format, and identify possible corrections. Formats to include:

- bar graphs
- line graphs

MA.912.S.3.1

- stem and leaf plots
- circle graphs
- histograms
- box and whiskers plots
- scatter plots
- cumulative frequency (ogive) graphs

Collect, organize, and analyze data sets, determine the best
MA.912.S.3.2 format for the data and present visual summaries from the following:

High

- bar graphs
- line graphs
- stem and leaf plots
- circle graphs
- histograms
- box and whisker plots
- scatter plots
- cumulative frequency (ogive) graphs

Calculate and interpret measures of the center of a set of
MA.912.S.3.3 data, including mean, median, and weighted mean, and use Moderate these measures to make comparisons among sets of data.

Calculate and interpret measures of variance and standard
MA.912.S.3.4 deviation. Use these measures to make comparisons among Moderate sets of data.

MA.912.S.3.5 Calculate and interpret the range and quartiles of a set of Moderate data.

Use empirical rules such as the 68-95-99.7 rule to estimate
MA.912.S.3.6 spread of distributions and to make comparisons among sets Moderate of data.

Calculate the correlation coefficient of a set of paired data,
MA.912.S.3.7 and interpret the coefficient as a measure of the strength and Moderate direction of the relationship between the variables.

Determine whether a data distribution is symmetric or
MA.912.S.3.8 skewed based on an appropriate graphical presentation of Low the data.

Identify outliers in a set of data based on an appropriate
MA.912.S.3.9 graphical presentation of the data, and describe the effect of Moderate outliers on the mean, median, and range of the data.

MA.912.S.4.1 Explain and interpret the concepts of confidence level and "margin of error."

High

MA.912.S.4.2 Use a simulation to approximate sampling distributions for High
the mean, using repeated sampling simulations from a given population.

MA.912.S.4.3 Apply the Central Limit Theorem to solve problems. High

MA.912.S.4.4 $\begin{aligned} & \text { Approximate confidence intervals for means using } \\ & \text { simulations of the distribution of the sample mean. }\end{aligned} \quad$ High

MA.912.S.4.5 Find the equation of the least squares regression line for a set of data.

Low

Analyze the relationship between confidence level, margin of error, and sample size.

High
MA.912.S.5.1

MA.912.S.5. 2 Apply the general principles of hypothesis testing.
High

MA.912.S.5.3 Explain and identify the following: null hypothesis, alternative hypotheses, Type I error, and Type II error.

MA.912.S.5.4 Explain the meaning of p-value and its role in hypothesis testing.

Perform hypothesis tests of means and proportions for large
MA.912.S.5.5 samples, using simulations to determine whether a sample High mean (proportion) has a low likelihood of occurring.

MA.912.S.5.6 $\begin{aligned} & \text { Interpret the results of hypothesis tests of means and } \\ & \text { proportions, and make decisions based on p-values of test. }\end{aligned}$ High

MA.912.S.5.8 Use a regression line equation to make predictions.
Moderate

MA.912.S.5.9 $\begin{aligned} & \text { Interpret the coefficient of determination, } \mathrm{r}^{2} \text {, for a least- Moderate } \\ & \text { squares regression. }\end{aligned}$

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number: 1210310
Course Title: IB Statistics and Introductory Differential Calculus
Course Length: Year
Course Status: State Board Approved
IB?
International Yes
Baccalaureate

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at:
http://www.achieve.org/node/867.
The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A. 2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number:	1210320
Course Title:	Advanced Placement Statistics
Course Length:	Year
Course Status:	State Board Approved
AP? Advanced Placement	Yes
General Notes:	The course descriptions for Advanced Placement courses are located on the College Board site at http://apcentral.collegeboard.com/apc/public/courses/descriptions/index.html

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A. 2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	
Number:	1210330
Course Title:	AICE Mathematics Statistics
Course	Semester
Length:	
Course	State Board Approved
Status:	
AICE?	
Advanced International	Yes
Certification of Education	
General	The course description for this AICE course is provided at this link:
Notes:	http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=755

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A.2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1211300
Number:	
Course Title:	Trigonometry
Course Length:	Semester
Course Status:	State Board Approved

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4

Assessment: - MA.912.A.1.7

- MA.912.A.2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

RELATED BENCHMARKS (30) :

Scheme Descriptor

Cognitive
Complexity

LA.1112.1.6.1 The student will use new vocabulary that is introduced and taught directly;

The student will use background knowledge of subject and related content areas, prereading strategies (e.g., previewing,
LA.1112.1.7.1 discussing, generating questions), text features, and text structure to make and confirm complex predictions of content, purpose, and organization of a reading selection;

LA.1112.1.7.4 The student will identify cause-and-effect relationships in text;

The student will prewrite by making a plan for writing that
LA.1112.3.1.2 addresses purpose, audience, a controlling idea, logical sequence, and time frame for completion; and

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

The student will draft writing by establishing a logical
LA.1112.3.2.2 organizational pattern with supporting details that are substantial, specific, and relevant; and

Demonstrate an understanding of the geometric
MA.912.D.9.1 interpretation of vectors and vector operations including addition, scalar multiplication, dot product, and cross product in the plane and in three-dimensional space.

Demonstrate an understanding of the algebraic interpretation
MA.912.D.9.2 of vectors and vector operations including addition, scalar multiplication, dot product, and cross product in the plane and in three-dimensional space.

MA.912.D.9.3 Use vectors to model and solve application problems.
High

MA.912.T.1.1 Convert between degree and radian measures.
Moderate

MA.912.T.1.2 Define and determine sine and cosine using the unit circle. Moderate

State and use exact values of trigonometric functions for
MA.912.T.1.3 special angles: multiples of $\frac{\pi}{6}$ and $\frac{\pi}{4}$ (degree and radian measures).

MA.912.T.1.4
Find approximate values of trigonometric and inverse trigonometric functions using appropriate technology.

MA.912.T.1.5 Make connections between right triangle ratios, trigonometric functions, and circular functions.

Define and graph trigonometric functions using domain,
MA.912.T.1. 6 range, intercepts, period, amplitude, phase shift, vertical shift, and asymptotes with and without the use of graphing technology.

MA.912.T.1.7 Define and graph inverse trigonometric relations and functions.

Solve real-world problems involving applications of
MA.912.T.1.8 trigonometric functions using graphing technology when appropriate.

Define and use the trigonometric ratios (sine, cosine,
MA.912.T.2.1 tangent, cotangent, secant, cosecant) in terms of angles of right triangles.

MA.912.T.2.2
Solve real-world problems involving right triangles using technology when appropriate.

Apply the laws of sines and cosines to solve real-world problems using technology.

High

Moderate
MA.912.T.2.4
Use the area of triangles given two sides and an angle or three sides to solve real-world problems.

Verify the basic Pythagorean identities, such
MA.912.T.3.1 as $\sin ^{2} x+\cos ^{2} x=1$, and show they are equivalent to the Moderate Pythagorean Theorem.
MA.912.T.3.2 Use basic trigonometric identities to verify other identities and simplify expressions.Use the sum and difference, half-angle and double-angleMA.912.T.3.3 formulas for sine, cosine, and tangent, when formulas are Moderateprovided.
Solve trigonometric equations and real-world problems
MA.912.T.3.4 involving applications of trigonometric equations using High technology when appropriate.
Define polar coordinates and relate polar coordinates to
MA.912.T.4.1 Cartesian coordinates with and without the use of technology.
MA.912.T.4.2 Represent equations given in rectangular coordinates in terms of polar coordinates.
Moderate
MA.912.T.4.3
Graph equations in the polar coordinate plane with and without the use of graphing technology.
Define the trigonometric form of complex numbers, convert
MA.912.T.4.4 complex numbers to trigonometric form, and multiply
Moderate complex numbers in trigonometric form.
MA.912.T.4.5 Apply DeMoivre's Theorem to perform operations with complex numbers.

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course Number: 1211800
Course Title: Trigonometry-International Baccalaureate
Course Length: Semester
Course Status: State Board Approved
IB?
International Yes
Baccalaureate

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at:
http://www.achieve.org/node/867.
The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A. 2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1220910
Number:	
Course Title:	Discrete Mathematics
Course Length:	Year
Course Status:	State Board Approved

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A.2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

RELATED BENCHMARKS (36) :

LA.1112.1.6.1 The student will use new vocabulary that is introduced and taught directly;

LA.1112.1.6.9
The student will determine the correct meaning of words with multiple meanings in context;

The student will organize information to show understanding or relationships among facts, ideas, and
LA.1112.2.2.3 events (e.g., representing key points within text through charting, mapping, paraphrasing, summarizing, comparing, contrasting, outlining);

MA.912.A.7.9 Solve optimization problems. High

Use a variety of problem-solving strategies, such as
MA.912.A.10.1 drawing a diagram, making a chart, guessing- andchecking, solving a simpler problem, writing an equation, working backwards, and creating a table.

MA.912.A.10.2 Decide whether a solution is reasonable in the context of the original situation.

Moderate
High

Use recursive and iterative thinking to solve problems,
MA.912.D.1.1 including identification of patterns, population growth and Moderate decline, and compound interest.

MA.912.D.1.2 Use finite differences to solve problems and to find explicit formulas for recurrence relations.

High

Use mathematical induction to prove various concepts in
MA.912.D.1.3 number theory (such as sums of infinite integer series, divisibility statements, and parity statements), recurrence relations, and other applications.

MA.912.D.2.1
Use Euler and Hamilton cycles and paths in graphs to solve routing problems.

MA.912.D.2.2 Use critical path analysis to solve scheduling problems.
High

MA.912.D.2.3 Use graph coloring techniques to solve problems. Moderate

MA.912.D.2.4 Use spanning trees, rooted trees, binary trees, and decision trees to solve problems.

MA.912.D.4.1 Solve maximal profit/minimal cost problems.
High

MA.912.D.6.1

MA.912.D.6.2

MA.912.D.6.3
Determine whether two propositions are logically equivalent.

Use methods of direct and indirect proof and determine whether a short proof is logically valid.

Identify and give examples of :

- undefined terms;
- axioms;
- theorems;
- inductive and deductive proofs; and,
- inductive and deductive reasoning.

Construct logical arguments using laws of detachment
MA.912.D.6.6 (modus ponens), syllogism, tautology, and contradiction; judge the validity of arguments, and give counterexamples to disprove statements.

MA.912.D.6.7 Use applications of the universal and existential quantifiers
to propositional statements.

MA.912.D.7.1
Perform set operations such as union and intersection, complement, and cross product.

MA.912.D.7.2
Use Venn diagrams to explore relationships and patterns and to make arguments about relationships between sets.

Use matrices to organize and store data. Perform matrix
MA.912.D.8.1 operations (addition, subtraction, scalar multiplication, multiplication)
Use truth tables to determine truth values of propositional statements.

Find the converse, inverse, and contrapositive of a statement

MA.912.D.6.4 to disprove statements.

High
Low
Moderate
Moderate
Moderate
Moderate

Moderate

Moderate

Low

Low

Moderate

Low

MA.912.D.8.2 Use matrix operations to solve problems.

MA.912.D.8.4 Find the inverse of a matrix, and use the inverse to solve problems with and without the use of technology.

High

Use determinants of 2×2 and 3×3 matrices as well as
MA.912.D.8.5 higher order matrices with and without the use of Low technology.

Use matrices to solve Markov chain problems that link present events to future events using probabilities.

High
MA.912.D.8.6

MA.912.D.11.1 Define arithmetic and geometric sequences and series. Low

MA.912.D.11.2 Use sigma notation to describe series. Low

MA.912.D.11.3 Find specified terms of arithmetic and geometric Low $\begin{aligned} & \text { Lequences. }\end{aligned}$

Find partial sums of arithmetic and geometric series, and
MA.912.D.11.4 find sums of infinite convergent geometric series. Use Moderate Sigma notation where applicable.

MA.912.D.11.5 Explore and use other sequences found in nature such as the Fibonacci sequence and the golden ratio.

High

Use counting principles, including the addition and the
MA.912.P.1.1 multiplication principles, to determine size of finite sample High spaces and probabilities of events in those spaces.

MA.912.P.1.2 $\begin{aligned} & \text { Use formulas for permutations and combinations to count } \\ & \text { outcomes and determine probabilities of events. }\end{aligned}$
Moderate

MA.912.P.2.2 Determine probabilities of independent events. Moderate

Florida Department of Education

COURSE DESCRIPTION GRADES 9-12

Course	1298310
Number:	
Course Title:	Advanced Topics in Mathematics (formerly 129830A)
Course	Year
Length:	

Course Status: State Board Approved

ASSESSMENT

Teachers whose students will take the American Diploma Project (ADP) Algebra 2 End-of-Course Exam may want to be aware of the framework for this exam. The framework is available at: http://www.achieve.org/node/867.

The following Florida benchmarks are not in the Algebra I/II course sequence, but they are included in the ADP Algebra 2 EOC exam framework:

- MA.912.A.1.1
- MA.912.A.1.3
- MA.912.A.1.4
- MA.912.A.1.7
- MA.912.A.2.9
- MA.912.A.5.6
- MA.912.A.5.7
- MA.912.A.7.9

Additionally the following benchmarks are not in the Integrated I/II/III course sequence, but they are in the ADP Algebra 2 EOC framework:

- MA.912.A.3.5
- MA.912.A.6.3

RELATED BENCHMARKS (51) :

Scheme
Descriptor
LA.1112.1.6.1 The student will use new vocabulary that is introduced and taught directly;

The student will use background knowledge of subject and related content areas, prereading strategies (e.g.,
LA.1112.1.7.1 previewing, discussing, generating questions), text features, and text structure to make and confirm complex predictions of content, purpose, and organization of a reading selection;

LA.1112.1.7.4 The student will identify cause-and-effect relationships in text;

The student will prewrite by making a plan for writing that
LA.1112.3.1.2 addresses purpose, audience, a controlling idea, logical sequence, and time frame for completion; and

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn Diagram, web, story map, plot pyramid) to develop a personal organizational style.

Identify and graph common functions (including but not
MA.912.A.2.6 limited to linear, rational, quadratic, cubic, radical, absolute Moderate value).

MA.912.A.2.8 Determine the composition of functions.
Low

MA.912.A.2.9
Recognize, interpret, and graph functions defined piecewise with and without technology.

MA.912.A.2.13 Solve real-world problems involving relations and functions.

High

Use theorems of polynomial behavior (including but not limited to the Fundamental Theorem of Algebra,
MA.912.A.4.6 Remainder Theorem, the Rational Root Theorem,
Moderate Descartes' Rule of Signs, and the Conjugate Root Theorem) to find the zeros of a polynomial function.

MA.912.A.4.7 Write a polynomial equation for a given set of real and/or complex roots.

Moderate

MA.912.A.4.8 Describe the relationships among the solutions of an
equation, the zeros of a function, the x-intercepts of a graph, and the factors of a polynomial expression with and without technology.
$\begin{array}{lll}\text { MA.912.A.4.11 } & \begin{array}{l}\text { Solve a polynomial inequality by examining the graph with } \\ \text { and without the use of technology. }\end{array} & \text { Moderate } \\ \text { MA.912.A.5.1 } & \text { Simplify algebraic ratios. } & \text { Moderate } \\ \text { MA.912.A.5.2 } & \text { Add, subtract, multiply, and divide rational expressions. } & \text { Moderate } \\ \text { MA.912.A.5.3 } & \text { Simplify complex fractions. } & \text { Moderate } \\ \text { MA.912.A.5.5 } & \text { Solve rational equations. } & \text { Moderate }\end{array}$

Identify removable and non-removable discontinuities, and
MA.912.A.5.6 vertical, horizontal, and oblique asymptotes of a graph of a Moderate rational function, find the zeros, and graph the function.

MA.912.A.5.7 $\begin{aligned} & \text { Solve real-world problems involving rational equations }\end{aligned}$ (mixture, distance, work, interest, and ratio).

MA.912.A.7.5 $\begin{aligned} & \text { Solve quadratic equations over the complex number }\end{aligned}$ system.

High

Moderate

MA.912.A.7.5

MA.912.A.7.7 $\begin{aligned} & \text { Solve non-linear systems of equations with and without } \\ & \text { using technology. }\end{aligned}$ using technology.

High

Define and use the properties of logarithms to simplify
$\begin{array}{ll}\text { MA.912.A.8.2 } & \begin{array}{l}\text { logarithmic expressions and to find their approximate Low } \\ \text { values. }\end{array}\end{array}$

MA.912.A.8.3 Graph exponential and logarithmic functions. Moderate
MA.912.A.8.5 Solve logarithmic and exponential equations. Moderate

Write the equations of conic sections in standard form and
$\begin{array}{ll}\text { MA.912.A.9.1 } & \begin{array}{l}\text { general form, in order to identify the conic section and to } \\ \text { find its geometric properties (foci, asymptotes, eccentricity, } \\ \text { etc.). }\end{array}\end{array}$ etc.).
MA.912.A.9.2 Graph conic sections with and without using graphing technology.
MA.912.A.9.3 Solve real-world problems involving conic sections High
Use matrices to organize and store data. Perform matrix
MA.912.D.8.1 operations (addition, subtraction, scalar multiplication, multiplication)
MA.912.D.8.2 Use matrix operations to solve problems.
MA.912.D.8.4 $\begin{aligned} & \text { Find the inverse of a matrix, and use the inverse to solve } \\ & \text { problems with and without the use of technology. }\end{aligned}$ problems with and without the use of technology.
Use determinants of 2×2 and 3×3 matrices as well as
MA.912.D.8.5 higher order matrices with and without the use of Low technology.
MA.912.D.11.1 Define arithmetic and geometric sequences and series. Low
MA.912.D.11.2 Use sigma notation to describe series.
Low
MA.912.D.11.3 $\begin{aligned} & \text { Find specified terms of arithmetic and geometric Low } \\ & \text { sequences. }\end{aligned}$
Find partial sums of arithmetic and geometric series, and
MA.912.D.11.4 find sums of infinite convergent geometric series. Use Moderate Sigma notation where applicable.
$\begin{array}{ll}\text { MA.912.F.1.1 } & \begin{array}{l}\text { Explain the difference between simple and compound } \\ \text { interest. }\end{array}\end{array}$
MA.912.F.1.2 Solve problems involving compound interest.
High
MA.912.F.1.3 $\begin{aligned} & \text { Demonstrate the relationship between simple interest and }\end{aligned}$ linear growth.
Moderate
MA.912.F.1.4 $\begin{aligned} & \text { Demonstrate the relationship between compound interest } \\ & \text { and exponential growth. }\end{aligned}$

MA.912.F.2.1
Calculate the future value of a given amount of money with and without technology.

Moderate

Use counting principles, including the addition and the
MA.912.P.1.1 multiplication principles, to determine size of finite sample High spaces and probabilities of events in those spaces.

MA.912.P.1.2
Use formulas for permutations and combinations to count outcomes and determine probabilities of events.

Moderate

Determine probabilities of complementary events, and calculate odds for and against the occurrence of events.

MA.912.P.2.2 Determine probabilities of independent events.
Moderate

Understand and use the concept of conditional probability,
MA.912.P.2.3
including: understanding how conditioning affects the probability of events and finding conditional probabilities High from a two-way frequency table.

Calculate and interpret measures of the center of a set of
MA.912.S.3.3 data, including mean, median, and weighted mean, and use Moderate these measures to make comparisons among sets of data.

Calculate and interpret measures of variance and standard
MA.912.S.3.4 deviation. Use these measures to make comparisons among Moderate sets of data.

MA.912.S.3.5 $\begin{aligned} & \text { Calculate and interpret the range and quartiles of a set of } \\ & \text { data. }\end{aligned}$
Moderate

Use empirical rules such as the 68-95-99.7 rule to estimate
MA.912.S.3.6 spread of distributions and to make comparisons among Moderate sets of data.

Define and use the trigonometric ratios (sine, cosine,
MA.912.T.2.1 tangent, cotangent, secant, cosecant) in terms of angles of Moderate right triangles.

MA.912.T.2.2
Solve real-world problems involving right triangles using technology when appropriate.

[^0]: MA.912.T.5.2
 Decide whether a solution is reasonable in the context of the original situation.

 Moderate

[^1]: ASSESSMENT
 The Benchmarks MA.912.A.3.14 and MA.912.A.3.15 are limited to a maximum of two variables in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
 The Benchmark MA.912.A.10.3 is limited to linear expressions, equations, and inequalities in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.
 Assessment: The Benchmark MA.912.A.4.4 is limited to dividing polynomials by monomials and does not include synthetic division in Algebra I, Algebra IH, Algebra Ib, and Applied Math II. The Benchmark MA.912.A.6.2 is limited to radical expressions in the form of square roots in Algebra I, Algebra IH, Algebra Ib, Applied Math II, and Integrated Math I.

